首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Striatal neurodegeneration and synaptic dysfunction in Huntington's disease are mediated by the mutant huntingtin (mHtt) protein. MHtt disrupts calcium homeostasis and facilitates excitotoxicity, in part by altering NMDA receptor (NMDAR) trafficking and function. Pre‐symptomatic (excitotoxin‐sensitive) transgenic mice expressing full‐length human mHtt with 128 polyglutamine repeats (YAC128 Huntington's disease mice) show increased calpain activity and extrasynaptic NMDAR (Ex‐NMDAR) localization and signaling. Furthermore, Ex‐NMDAR stimulation facilitates excitotoxicity in wild‐type cortical neurons via calpain‐mediated cleavage of STriatal‐Enriched protein tyrosine Phosphatase 61 (STEP61). The cleavage product, STEP33, cannot dephosphorylate p38 mitogen‐activated protein kinase (MAPK), thereby augmenting apoptotic signaling. Here, we show elevated extrasynaptic calpain‐mediated cleavage of STEP61 and p38 phosphorylation, as well as STEP61 inactivation and reduced extracellular signal‐regulated protein kinase 1/2 phosphorylation (ERK1/2) in the striatum of 6‐week‐old, excitotoxin‐sensitive YAC128 mice. Calpain inhibition reduced basal and NMDA‐induced STEP61 cleavage. However, basal p38 phosphorylation was normalized by a peptide disrupting NMDAR‐post‐synaptic density protein‐95 (PSD‐95) binding but not by calpain inhibition. In 1‐year‐old excitotoxin‐resistant YAC128 mice, STEP33 levels were not elevated, but STEP61 inactivation and p38 and ERK 1/2 phosphorylation levels were increased. These results show that in YAC128 striatal tissue, enhanced NMDAR–PSD‐95 interactions contributes to elevated p38 signaling in early, excitotoxin‐sensitive stages, and suggest that STEP61 inactivation enhances MAPK signaling at late, excitotoxin‐resistant stages.

  相似文献   


4.
A growing body of evidence indicates that valproic acid (VPA), a histone deacetylase inhibitor used to treat epilepsy and mood disorders, has histone deacetylase‐related and ‐unrelated neurotoxic activity, the mechanism of which is still poorly understood. We report that VPA induces neuronal cell death through an atypical calpain‐dependent necroptosis pathway that initiates with downstream activation of c‐Jun N‐terminal kinase 1 (JNK1) and increased expression of receptor‐interacting protein 1 (RIP‐1) and is accompanied by cleavage and mitochondrial release/nuclear translocation of apoptosis‐inducing factor, mitochondrial release of Smac/DIABLO, and inhibition of the anti‐apoptotic protein X‐linked inhibitor of apoptosis (XIAP). Coinciding with apoptosis‐inducing factor nuclear translocation, VPA induces phosphorylation of the necroptosis‐associated histone H2A family member H2AX, which is known to contribute to lethal DNA degradation. These signals are inhibited in neuronal cells that express constitutively activated MEK/ERK and/or PI3‐K/Akt survival pathways, allowing them to resist VPA‐induced cell death. The data indicate that VPA has neurotoxic activity and identify a novel calpain‐dependent necroptosis pathway that includes JNK1 activation and RIP‐1 expression.

  相似文献   


5.
DJ‐1 is an oxidative stress sensor that localizes to the mitochondria when the cell is exposed to oxidative stress. DJ‐1 mutations that result in gene deficiency are linked to increased risk of Parkinson's disease (PD). Activation of microglial stress conditions that are linked to PD may result in neuronal death. We postulated that DJ‐1 deficiency may increase microglial neurotoxicity. We found that down‐regulation of DJ‐1 in microglia using an shRNA approach increased cell sensitivity to dopamine as measured by secreted pro‐inflammatory cytokines such as IL‐1β and IL‐6. Furthermore, we discovered that DJ‐1‐deficient microglia had increased monoamine oxidase activity that resulted in elevation of intracellular reactive oxygen species and nitric oxide leading to increased dopaminergic neurotoxicity. Rasagaline, a monoamine oxidase inhibitor approved for treatment of PD, reduced the microglial pro‐inflammatory phenotype and significantly reduced neurotoxicity. Moreover, we discovered that DJ‐1‐deficient microglia have reduced expression of triggering receptor expressed on myeloid cells 2 (TREM2), previously suggested as a risk factor for pro‐inflammation in neurodegenerative diseases. Further studies of DJ‐1‐mediated cellular pathways in microglia may contribute useful insights into the development of PD providing future avenues for therapeutic intervention.

  相似文献   


6.
7.
Bisphenol‐A (BPA) has the capability of interfering with the effects of estrogens on modulating brain function. The purpose of this study was to investigate the effects of BPA on memory and synaptic modification in the hippocampus of female mice under different levels of cycling estrogen. BPA exposure (40, 400 μg/kg/day) for 8 weeks did not affect spatial memory and passive avoidance task of gonadally intact mice but improved ovariectomy (Ovx)‐induced memory impairment, whereas co‐exposure of BPA with estradiol benzoate (EB) diminished the rescue effect of EB on memory behavior of Ovx mice. The results of morphometric measurement showed that BPA positively modified the synaptic interface structure and increased the synaptic density of CA1 pyramidal cell in the hippocampus of Ovx females, but inhibited the enhancement of EB on synaptic modification and synaptogenesis of Ovx mice. Furthermore, BPA up‐regulated synaptic proteins synapsin I and PSD‐95 and NMDA receptor NR2B but inhibited EB‐induced increase in PSD‐95 and NR2B in the hippocampus of Ovx mice. These results suggest that BPA interfered with normal hormonal regulation in synaptic plasticity and memory of female mice as a potent estrogen mimetic and as a disruptor of estrogen under various concentrations of cycling estrogen.

  相似文献   


8.
The neuronal endocannabinoid system is known to depress synaptic inputs retrogradely in an activity‐dependent manner. This mechanism has been generally described for excitatory glutamatergic and inhibitory GABAergic synapses. Here, we report that neurones in the auditory brainstem of the Mongolian gerbil (Meriones unguiculatus) retrogradely regulate the strength of their inputs via the endocannabinoid system. By means of whole‐cell patch‐clamp recordings, we found that retrograde endocannabinoid signalling attenuates both glycinergic and glutamatergic post‐synaptic currents in the same types of neurones. Accordingly, we detected the cannabinoid receptor 1 in excitatory and inhibitory pre‐synapses as well as the endocannabinoid‐synthesising enzymes (diacylglycerol lipase α/β, DAGLα/β) post‐synaptically through immunohistochemical stainings. Our study was performed with animals aged 10–15 days, that is, in the time window around the onset of hearing. Therefore, we suggest that retrograde endocannabinoid signalling has a role in adapting inputs during the functionally important switch from spontaneously generated to sound‐related signals.

  相似文献   


9.
Nitric oxide (NO) plays an important role in phase‐shifting of circadian neuronal activities in the suprachiasmatic nucleus and circadian behavior activity rhythms. In the retina, NO production is increased in a light‐dependent manner. While endogenous circadian oscillators in retinal photoreceptors regulate their physiological states, it is not clear whether NO also participates in the circadian regulation of photoreceptors. In this study, we demonstrate that NO is involved in the circadian phase‐dependent regulation of L‐type voltage‐gated calcium channels (L‐VGCCs). In chick cone photoreceptors, the L‐VGCCα1 subunit expression and the maximal L‐VGCC currents are higher at night, and both Ras‐mitogen‐activated protein kinase (MAPK)‐extracellular signal‐regulated kinase (Erk) and Ras‐phosphatidylinositol 3 kinase (PI3K)‐protein kinase B (Akt) are part of the circadian output pathways regulating L‐VGCCs. The NO‐cGMP‐protein kinase G (PKG) pathway decreases L‐VGCCα1 subunit expression and L‐VGCC currents at night, but not during the day, and exogenous NO donor or cGMP decreases the phosphorylation of Erk and Akt at night. The protein expression of neural NO synthase (nNOS) is also under circadian control, with both nNOS and NO production being higher during the day. Taken together, NO/cGMP/PKG signaling is involved as part of the circadian output pathway to regulate L‐VGCCs in cone photoreceptors.

  相似文献   


10.
Human immunodeficiency virus‐1 (HIV) is a public health issue and a major complication of the disease is NeuroAIDS. In vivo, microglia/macrophages are the main cells infected. However, a low but significant number of HIV‐infected astrocytes has also been detected, but their role in the pathogenesis of NeuroAIDS is not well understood. Our previous data indicate that gap junction channels amplify toxicity from few HIV‐infected into uninfected astrocytes. Now, we demonstrated that HIV infection of astrocytes results in the opening of connexin43 hemichannels (HCs). HIV‐induced opening of connexin43 HCs resulted in dysregulated secretion of dickkopf‐1 protein (DKK1, a soluble wnt pathway inhibitor). Treatment of mixed cultures of neurons and astrocytes with DKK1, in the absence of HIV infection, resulted in the collapse of neuronal processes. HIV infection of mixed cultures of human neurons and astrocytes also resulted in the collapse of neuronal processes through a DKK1‐dependent mechanism. In addition, dysregulated DKK1 expression in astrocytes was observed in human brain tissue sections of individuals with HIV encephalitis as compared to tissue sections from uninfected individuals. Thus, we demonstrated that HIV infection of astrocytes induces dysregulation of DKK1 by a HC‐dependent mechanism that contributes to the brain pathogenesis observed in HIV‐infected individuals.

  相似文献   


11.
Brain damage after insult and cognitive decline are related to excitotoxicity and strongly influenced by aging, yet mechanisms of aging‐dependent susceptibility to excitotoxicity are poorly known. Several non‐steroidal anti‐inflammatory drugs (NSAIDs) may prevent excitotoxicity and cognitive decline in the elderly by an unknown mechanism. Interestingly, after several weeks in vitro, hippocampal neurons display important hallmarks of neuronal aging in vivo. Accordingly, rat hippocampal neurons cultured for several weeks were used to investigate mechanisms of aging‐related susceptibility to excitotoxicity and neuroprotection by NSAIDs. We found that NMDA increased cytosolic Ca2+ concentration in young, mature and aged neurons but only promoted apoptosis in aged neurons. Resting Ca2+ levels and responses to NMDA increased with time in culture which correlated with changes in expression of NMDA receptor subunits. In addition, NMDA promoted mitochondrial Ca2+ uptake only in aged cultures. Consistently, specific inhibition of mitochondrial Ca2+ uptake decreased apoptosis. Finally, we found that a series of NSAIDs depolarized mitochondria and inhibited mitochondrial Ca2+ overload, thus preventing NMDA‐induced apoptosis in aged cultures. We conclude that mitochondrial Ca2+ uptake is critical for age‐related susceptibility to excitotoxicity and neuroprotection by NSAIDs.

  相似文献   


12.
13.
Epidermal fatty acid‐binding protein (E‐FABP/FABP5/DA11) binds and transport long‐chain fatty acids in the cytoplasm and may play a protecting role during neuronal injury. We examined whether E‐FABP protects nerve growth factor‐differentiated PC12 cells (NGFDPC12 cells) from lipotoxic injury observed after palmitic acid (C16:0; PAM) overload. NGFDPC12 cells cultures treated with PAM/bovine serum albumin at 0.3 mM/0.15 mM show PAM‐induced lipotoxicity (PAM‐LTx) and apoptosis. The apoptosis was preceded by a cellular accumulation of reactive oxygen species (ROS) and higher levels of E‐FABP. Antioxidants MCI‐186 and N‐acetyl cysteine prevented E‐FABP's induction in expression by PAM‐LTx, while tert‐butyl hydroperoxide increased ROS and E‐FABP expression. Non‐metabolized methyl ester of PAM, methyl palmitic acid (mPAM), failed to increase cellular ROS, E‐FABP gene expression, or trigger apoptosis. Treatment of NGFDPC12 cultures with siE‐FABP showed reduced E‐FABP levels correlating with higher accumulation of ROS and cell death after exposure to PAM. In contrast, increasing E‐FABP cellular levels by pre‐loading the cells with recombinant E‐FABP diminished the PAM‐induced ROS and cell death. Finally, agonists for PPARβ (GW0742) or PPARγ (GW1929) increased E‐FABP expression and enhanced the resistance of NGFDPC12 cells to PAM‐LTx. We conclude that E‐FABP protects NGFDPC12 cells from lipotoxic injury through mechanisms that involve reduction of ROS.

  相似文献   


14.
15.
During human immunodeficiency virus (HIV)‐1 infection, perturbations in neuron–glia interactions may culminate in neuronal damage. Recently, purinergic receptors have been implicated in the promotion of virus‐induced neurotoxicity and supporting the viral life cycle at multiple stages. The astrocytes robustly express purinergic receptors. We therefore sought to examine if P2X7R, a P2X receptor subtype, can mediate HIV‐1 Tat‐induced neuronal apoptosis. Tat augmented the expression of P2X7R in astrocytes. Our data reveal the involvement of P2X7R in Tat‐mediated release of monocyte chemoattractant protein (MCP‐1) /chemokine (C‐C motif) ligand 2 (CCL2) from the astrocytes. P2X7R antagonists, such as the oxidized ATP, A438079, brilliant blue G, and broad spectrum P2 receptor antagonist suramin, attenuated Tat‐induced CCL2 release in a calcium‐ and extracellular signal‐regulated kinase (ERK)1/2‐dependent manner. Calcium chelators, (1,2‐bis(o‐aminophenoxy) ethane‐N,N,N',N'‐tetraacetic acid) acetoxymethyl ester and EGTA, and ERK1/2 inhibitor U0126 abolished chemokine (C‐C motif) ligand 2 release from astrocytes. Furthermore, in human neuronal cultures, we demonstrated P2X7R involvement in Tat‐mediated neuronal death. Importantly, in the TUNEL assay, the application of P2X7R‐specific antagonists or the knockdown of P2X7R in human astrocytes reduced HIV‐Tat‐induced neuronal death significantly, underlining the critical role of P2X7R in Tat‐mediated neurotoxicity. Our study provides novel insights into astrocyte‐mediated neuropathogenesis in HIV‐1 infection and a novel target for therapeutic management of neuroAIDS.

  相似文献   


16.
Development of the cerebral cortex is controlled by growth factors among which transforming growth factor beta (TGFβ) and insulin‐like growth factor 1 (IGF1) have a central role. The TGFβ‐ and IGF1‐pathways cross‐talk and share signalling molecules, but in the central nervous system putative points of intersection remain unknown. We studied the biological effects and down‐stream molecules of TGFβ and IGF1 in cells derived from the mouse cerebral cortex at two developmental time points, E13.5 and E16.5. IGF1 induces PI3K, AKT and the mammalian target of rapamycin complexes (mTORC1/mTORC2) primarily in E13.5‐derived cells, resulting in proliferation, survival and neuronal differentiation, but has small impact on E16.5‐derived cells. TGFβ has little effect at E13.5. It does not activate the PI3K‐ and mTOR‐signalling network directly, but requires its activity to mediate neuronal differentiation specifically at E16.5. Our data indicate a central role of mTORC2 in survival, proliferation as well as neuronal differentiation of E16.5‐derived cortical cells. mTORC2 promotes these cellular processes and is under control of PI3K‐p110‐alpha signalling. PI3K‐p110‐beta signalling activates mTORC2 in E16.5‐derived cells but it does not influence cell survival, proliferation and differentiation. This finding indicates that different mTORC2 subtypes may be implicated in cortical development and that these subtypes are under control of different PI3K isoforms.

  相似文献   


17.
Expressions of vascular endothelial growth factor (VEGF) receptors in astrocytes are increased in damaged brains. To clarify the regulatory mechanisms of VEGF receptors, the effects of endothelin‐1 (ET‐1) were examined in rat cultured astrocytes. Expressions of VEGF‐R1 and ‐R2 receptor mRNA were at similar levels, whereas the mRNA expressions of VEGF‐R3 and Tie‐2, a receptor for angiopoietins, were lower. Placenta growth factor, a selective agonist of the VEGF‐R1 receptor, induced phosphorylation of focal adhesion kinase (FAK) and extracellular signal regulated kinase 1/2 (ERK1/2). Phosphorylations of FAK and ERK 1/2 were also stimulated by VEGF‐E, a selective VEGF‐R2 agonist. Increased phosphorylations of FAK and ERK1/2 by VEGF165 were reduced by selective antagonists for VEGF‐R1 and ‐R2. Treatment with ET‐1 increased VEGF‐R1 mRNA and protein levels. The effects of ET‐1 on VEGF‐R1 mRNA were mimicked by Ala1,3,11,15‐ET‐1, a selective agonist for ETB receptors, and inhibited by BQ788, an ETB antagonist. ET‐1 did not affect the mRNA levels of VEGF‐R2, ‐R3, and Tie‐2. Pre‐treatment with ET‐1 potentiated the effects of placenta growth factor on phosphorylations of FAK and ERK1/2. These findings suggest that ET‐1 induces up‐regulation of VEGF‐R1 receptors in astrocytes, and potentiates VEGF signals in damaged nerve tissues.

  相似文献   


18.
Methyl‐β‐cyclodextrin (MβCD) is a reagent that depletes cholesterol and disrupts lipid rafts, a type of cholesterol‐enriched cell membrane microdomain. Lipid rafts are essential for neuronal functions such as synaptic transmission and plasticity, which are sensitive to even low doses of MβCD. However, how MβCD changes synaptic function, such as N‐methyl‐d ‐aspartate receptor (NMDA‐R) activity, remains unclear. We monitored changes in synaptic transmission and plasticity after disrupting lipid rafts with MβCD. At low concentrations (0.5 mg/mL), MβCD decreased basal synaptic transmission and miniature excitatory post‐synaptic current without changing NMDA‐R‐mediated synaptic transmission and the paired‐pulse facilitation ratio. Interestingly, low doses of MβCD failed to deplete cholesterol or affect α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid receptor (AMPA‐R) and NMDA‐R levels, while clearly reducing GluA1 levels selectively in the synaptosomal fraction. Low doses of MβCD decreased the inhibitory effects of NASPM, an inhibitor for GluA2‐lacking AMPA‐R. MβCD successfully decreased NMDA‐R‐mediated long‐term potentiation but did not affect the formation of either NMDA‐R‐mediated or group I metabotropic glutamate receptor‐dependent long‐term depression. MβCD inhibited de‐depression without affecting de‐potentiation. These results suggest that MβCD regulates GluA1‐dependent synaptic potentiation but not synaptic depression in a cholesterol‐independent manner.

  相似文献   


19.
Cannabinoid Receptor 1 (CB1) has been initially described as the receptor for Delta‐9‐Tetrahydrocannabinol in the central nervous system (CNS), mediating retrograde synaptic signaling of the endocannabinoid system. Beside its expression in various CNS regions, CB1 is ubiquituous in peripheral tissues, where it mediates, among other activities, the cell's energy homeostasis. We sought to examine the role of CB1 in the context of the evolutionarily conserved autophagic machinery, a main constituent of the regulation of the intracellular energy status. Manipulating CB1 by siRNA knockdown in mammalian cells caused an elevated autophagic flux, while the expression of autophagy‐related genes remained unaltered. Pharmacological inhibition of CB1 activity using Rimonabant likewise caused an elevated autophagic flux, which was independent of the mammalian target of rapamycin complex 1, a major switch in the control of canonical autophagy. In addition, knocking down coiled‐coil myosin‐like BCL2‐interacting protein 1, the key‐protein of the second canonical autophagy control complex, was insufficient to reduce the elevated autophagic flux induced by Rimonabant. Interestingly, lysosomal activity is not altered, suggesting a specific effect of CB1 on the regulation of autophagic flux. We conclude that CB1 activity affects the autophagic flux independently of the two major canonic regulation complexes controlling autophagic vesicle formation.

  相似文献   


20.
Synaptic impairment rather than neuronal loss may be the leading cause of cognitive dysfunction in brain aging. Certain small Rho‐GTPases are involved in synaptic plasticity, and their dysfunction is associated with brain aging and neurodegeneration. Rho‐GTPases undergo prenylation by attachment of geranylgeranylpyrophosphate (GGPP) catalyzed by GGTase‐I. We examined age‐related changes in the abundance of Rho and Rab proteins in membrane and cytosolic fractions as well as of GGTase‐I in brain tissue of 3‐ and 23‐month‐old C57BL/6 mice. We report a shift in the cellular localization of Rho‐GTPases toward reduced levels of membrane‐associated and enhanced cytosolic levels of those proteins in aged mouse brain as compared with younger mice. The age‐related reduction in membrane‐associated Rho proteins was associated with a reduction in GGTase‐Iβ levels that regulates binding of GGPP to Rho‐GTPases. Proteins prenylated by GGTase‐II were not reduced in aged brain indicating a specific targeting of GGTase‐I in the aged brain. Inhibition of GGTase‐I in vitro modeled the effects of aging we observed in vivo. We demonstrate for the first time a decrease in membrane‐associated Rho proteins in aged brain in association with down‐regulation of GGTase‐Iβ. This down‐regulation could be one of the mechanisms causing age‐related weakening of synaptic plasticity.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号