首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lateral nucleus of the amygdala (LA) has been implicated in the formation of long-term associative memory (LTM) of stimuli associated with danger through fear conditioning. The current study aims to detect genes that are expressed in LA following associative fear conditioning. Using oligonucleotide microarrays, we monitored gene expression in rats subjected to paired training where a tone co-terminates with a footshock, or unpaired training where the tone and footshock are presented in a non-overlapping manner. The paired protocol consistently leads to auditory fear conditioning memory formation, whereas the unpaired protocol does not. When the paired group was compared with the unpaired group 5 h after training, the expression of genes coding for the limbic system-associated membrane protein (Lsamp), kinesin heavy chain member 2 (Kif2), N -ethylmaleimide-sensitive fusion protein (NSF) and Hippocalcin-like 4 protein (Hpcal4) was higher in the paired group. These genes encode proteins that regulate neuronal axonal morphology (Lsamp, Kif2), presynaptic vesicle cycling and release (Hpcal4 and NSF), and AMPA receptor maintenance in synapses (NSF). Quantitative real-time PCR (qPCR) showed that Kif2 and Lsamp are expressed hours following fear conditioning but minutes after unpaired training. Hpcal4 is induced by paired stimulation only 5 h after the training. These results show that fear conditioning induces a unique temporal activation of molecular pathways involved in regulating synaptic transmission and axonal morphology in LA, which is different from non-associative stimulation.  相似文献   

2.
3.
《Cell reports》2023,42(4):112291
  1. Download : Download high-res image (186KB)
  2. Download : Download full-size image
  相似文献   

4.
Chronic stress in rodents was shown to induce structural shrinkage and functional alterations in the hippocampus that were linked to spatial memory impairments. Effects of chronic stress on the amygdala have been linked to a facilitation of fear conditioning. Although the underlying molecular mechanisms are still poorly understood, increasing evidence highlights the neural cell adhesion molecule (NCAM) as an important molecular mediator of stress‐induced structural and functional alterations. In this study, we investigated whether altered NCAM expression levels in the amygdala might be related to stress‐induced enhancement of auditory fear conditioning and anxiety‐like behavior. In adult C57BL/6J wild‐type mice, chronic unpredictable stress resulted in an isoform‐specific increase of NCAM expression (NCAM‐140 and NCAM‐180) in the amygdala, as well as enhanced auditory fear conditioning and anxiety‐like behavior. Strikingly, forebrain‐specific conditional NCAM‐deficient mice (NCAM‐floxed mice that express the cre‐recombinase under the control of the promoter of the α‐subunit of the calcium‐calmodulin‐dependent protein kinase II), whose amygdala NCAM expression levels are reduced, displayed impaired auditory fear conditioning which was not altered following chronic stress exposure. Likewise, chronic stress in these conditional NCAM‐deficient mice did not modify NCAM expression levels in the amygdala or hippocampus, while they showed enhanced anxiety‐like behavior, questioning the involvement of NCAM in this type of behavior. Together, our results strongly support the involvement of NCAM in the amygdala in the consolidation of auditory fear conditioning and highlight increased NCAM expression in the amygdala among the mechanisms whereby stress facilitates fear conditioning processes.  相似文献   

5.
The netrin-1 receptor Deleted in Colorectal Cancer (DCC) is required for the formation of major axonal projections by embryonic cortical neurons, including the corpus callosum, hippocampal commissure, and cortico-thalamic tracts. The presentation of DCC by axonal growth cones is tightly regulated, but the mechanisms regulating DCC trafficking within neurons are not well understood. Here, we investigated the mechanisms regulating DCC recruitment to the plasma membrane of embryonic cortical neurons. In embryonic spinal commissural neurons, protein kinase A (PKA) activation recruits DCC to the plasma membrane and enhances axon chemoattraction to netrin-1. We demonstrate that PKA activation similarly recruits DCC and increases embryonic cortical neuron axon extension, which, like spinal commissural neurons, respond to netrin-1 as a chemoattractant. We then determined if depolarization might recruit DCC to the plasma membrane. Neither netrin-1 induced axon extension, nor levels of plasma membrane DCC, were altered by depolarizing embryonic spinal commissural neurons with elevated levels of KCl. In contrast, depolarizing embryonic cortical neurons increased the amount of plasma membrane DCC, including at the growth cone, and increased axon outgrowth evoked by netrin-1. Inhibition of PKA, phosphatidylinositol-3-kinase, protein kinase C, or exocytosis blocked the depolarization-induced recruitment of DCC and suppressed axon outgrowth. Inhibiting protein synthesis did not affect DCC recruitment, nor were the distributions of trkB or neural cell adhesion molecule (NCAM) influenced by depolarization, consistent with selective mobilization of DCC. These findings identify a role for membrane depolarization modulating the response of axons to netrin-1 by regulating DCC recruitment to the plasma membrane.  相似文献   

6.
Creatine transporter (CrT; SLC6A8) deficiency (CTD) is an X‐linked disorder characterized by severe cognitive deficits, impairments in language and an absence of brain creatine (Cr). In a previous study, we generated floxed Slc6a8 (Slc6a8 flox) mice to create ubiquitous Slc6a8 knockout (Slc6a8?/y) mice. Slc6a8?/y mice lacked whole body Cr and exhibited cognitive deficits. While Slc6a8?/y mice have a similar biochemical phenotype to CTD patients, they also showed a reduction in size and reductions in swim speed that may have contributed to the observed deficits. To address this, we created brain‐specific Slc6a8 knockout (bKO) mice by crossing Slc6a8flox mice with Nestin‐cre mice. bKO mice had reduced cerebral Cr levels while maintaining normal Cr levels in peripheral tissue. Interestingly, brain concentrations of the Cr synthesis precursor guanidinoacetic acid were increased in bKO mice. bKO mice had longer latencies and path lengths in the Morris water maze, without reductions in swim speed. In accordance with data from Slc6a8 ?/y mice, bKO mice showed deficits in novel object recognition as well as contextual and cued fear conditioning. bKO mice were also hyperactive, in contrast with data from the Slc6a8 ?/y mice. The results show that the loss of cerebral Cr is responsible for the learning and memory deficits seen in ubiquitous Slc6a8?/y mice.  相似文献   

7.
Botrytis cinerea is a model plant‐pathogenic fungus that causes grey mould and rot diseases in a wide range of agriculturally important crops. A previous study has identified two enzymes and corresponding genes (bcdh, bcer) that are involved in the biochemical transformation of uridine diphosphate (UDP)‐glucose, the major fungal wall nucleotide sugar precursor, to UDP‐rhamnose. We report here that deletion of bcdh, the first biosynthetic gene in the metabolic pathway, or of bcer, the second gene in the pathway, abolishes the production of rhamnose‐containing glycans in these mutant strains. Deletion of bcdh or double deletion of both bcdh and bcer has no apparent effect on fungal development or pathogenicity. Interestingly, deletion of the bcer gene alone adversely affects fungal development, giving rise to altered hyphal growth and morphology, as well as reduced sporulation, sclerotia production and virulence. Treatments with wall stressors suggest the alteration of cell wall integrity. Analysis of nucleotide sugars reveals the accumulation of the UDP‐rhamnose pathway intermediate UDP‐4‐keto‐6‐deoxy‐glucose (UDP‐KDG) in hyphae of the Δbcer strain. UDP‐KDG could not be detected in hyphae of the wild‐type strain, indicating fast conversion to UDP‐rhamnose by the BcEr enzyme. The correlation between high UDP‐KDG and modified cell wall and developmental defects raises the possibility that high levels of UDP‐KDG result in deleterious effects on cell wall composition, and hence on virulence. This is the first report demonstrating that the accumulation of a minor nucleotide sugar intermediate has such a profound and adverse effect on a fungus. The ability to identify molecules that inhibit Er (also known as NRS/ER) enzymes or mimic UDP‐KDG may lead to the development of new antifungal drugs.  相似文献   

8.
9.
10.
11.
Endosulfine (EDSF) belongs to a highly conserved cAMP-regulated phosphoprotein (ARPP) family and was first isolated from ovine brain as a possible endogenous ligand for sulfonylurea receptors. To explore its involvement in brain functions, we investigated regional distribution of alpha-EDSF gene expression in the rat brain, and its regulation under physiological and pathological conditions. The majority of alpha-EDSF gene was expressed in the pyramidal neurons, which represent the principal excitatory neurons in various brain regions. Down-regulation of alpha-EDSF mRNA was detected in the rat hippocampus during long-term memory consolidation following a spatial learning experience, whereas swimming-related stress caused persistent up-regulation of alpha-EDSF gene expression in several brain regions. These changes, however, were absent from brains of diabetic rats that were subjected to the same behavioral treatments. Intracerebroventricular injection of streptozocin with a toxic dose induced severe learning deficits and brain structure alteration accompanied by a massive increase of alpha-EDSF mRNA in the somatosensory cortex. These results suggest that alpha-EDSF gene expression is differentially regulated by distinct brain processes involving excitatory neuronal activities.  相似文献   

12.
This study examined the role of nitric oxide (NO) on the expression of the hepatic vasoregulatory gene during polymicrobial sepsis. Aminoguanidine (AG, 100 mg/kg) or Nomega-nitro-L-arginine methyl ester (L-NAME, 100 mg/kg) was injected intraperitoneally at 0, 3, 6, 10, and 20 h after a cecal ligation and puncture (CLP). The heart rate increased 24 h after the CLP, and this increase was attenuated by L-NAME and further attenuated by AG. The mean arterial pressure in the CLP animals did not change significantly 24 h after the onset of sepsis but was increased after the L-NAME injection. Sepsis increased the serum aminotransferase levels, which were attenuated by AG but augmented by L-NAME. CLP increased the mRNA level of the ET-1 and ETB receptors in the liver. This increase was prevented by AG but augmented by L-NAME. The level of iNOS and HO-1 mRNA expression were increased by CLP, which was prevented by both AG and L-NAME. The level of TNF-alpha and COX-2 mRNA expression increased after CLP, and was attenuated by AG. These results show that iNOS and eNOS are regulated differently in sepsis. While eNOS appears to have a protective role in liver microcirculation, the strong upregulation of iNOS might contribute to a microvascular dysfunction and hepatic injury.  相似文献   

13.
14.
The expression of several Arabidopsis thaliana senescence-associated genes (SAGs) in attached and/or detached leaves was compared in response to age, dehydration, darkness, abscisic acid, cytokinin, and ethylene treatments. Most of the SAGs responded to most of the treatments in a similar fashion. Detachment in darkness and ethylene were the strongest inducers of both SAGs and visible yellowing. Detachment in light was also a strong inducer of SAGs, but not of visible yellowing. The other treatments varied more in their effects on individual SAGs. Responses were examined in both older and younger leaves, and generally were much stronger in the older ones. Individual SAGs differed from the norms in different ways, however, suggesting that their gene products play a role in overlapping but not identical circumstances. Some SAGs responded quickly to treatments, which may indicate a direct response. Others responded more slowly, which may indicate an indirect response via treatment-induced senescence. Four new SAGs were isolated as part of this work, one of which shows strong similarity to late embryogenesis-abundant (Lea) genes.  相似文献   

15.
16.
17.
The hippocampus is a crucial part of the limbic system involved both in cognitive processing and in the regulation of responses to stress. Adverse experiences early in life can disrupt hippocampal development and lead to impairment of the hypothalamic‐pituitary‐adrenal axis response to subsequent stressors. In our study, two types of early‐life stress were used: prolonged separation of pups from their mothers (for 3 hours/day, maternal separation, MS) and brief separation (for 15 minutes/day, handling, HD). In the first part of our study, we found that adult female mice (F0) who had experienced MS showed reduced locomotor activity and impairment of long‐term spatial and recognition memory. Analysis of various hippocampal regions showed that MS reduced the number of mature neurons in CA3 of females, which is perhaps a crucial hippocampal region for learning and memory; however, neurogenesis remained unchanged. In the second part, we measured maternal care in female mice with a history of early‐life stress (F0) as well as the behavior of their adult offspring (F1). Our results indicated that MS reduced the level of maternal care in adult females (F0) toward their own progeny and caused sex‐specific changes in the social behavior of adult offspring (F1). In contrast to MS, HD had no influence on female behavior or hippocampal plasticity. Overall, our results suggest that prolonged MS early in life affects the adult behavior of F0 female mice and hippocampal neuronal plasticity, whereas the mothers' previous experience has effects on the behavior of their F1 offspring through disturbances of mother‐infant interactions.  相似文献   

18.
Evidence is accumulating that early emotional experience interferes with the development of the limbic system, which is involved in perception and regulation of emotional behaviors as well as in learning and memory formation. Limbic brain regions, as well as hypothalamic regions and other, nonlimbic areas contain specific neuron subpopulations, which express and release corticotropin releasing factor (CRF). Since these neurons serve to connect limbic function to endocrine, stress-related responses, we proposed that stressful experience during early postnatal brain development should interfere with the development of CRF-containing neurons, particularly in brain regions essential for emotional regulation. Applying neonatal separation stress (daily 1 h separation from the parents and litter mates) as stressor, the number of immunocytochemically identified CRF-expressing neurons/fibers was quantified in the amygdala, hippocampus, paraventricular nucleus of the hypothalamus, piriform cortex, and the somatosensory cortex of 3-week-old stressed and nonstressed Octodon degus, a semi-precocial rodent. Compared to controls neonatally stressed animals showed significantly lower levels of CRF-positive fibers (-60%) in the central amygdala, significantly less CRF-positive neurons in the dentate gyrus (-28%) and the CA1 region (-29%) and significantly lower CRF cell densities in the somatosensory cortex (-26%). On the other hand, we found significantly higher numbers of CRF-immunoreactive neurons in the basolateral amygdaloid complex (+192%) of stressed animals compared to nonstressed controls. No differences in CRF-immunoreactive cell densities were detected in the other regions. Additional behavioral analysis revealed significantly elevated exploratory behavior (+34%) in stressed animals compared to controls, which might indicate reduced anxiety in the stressed animals.  相似文献   

19.
Alkyl hydroperoxide reductase (ahpC) and organic hydroperoxide resistance (ohr) are distinct genes, structurally and regulatory, but have similar physiological functions. In Xanthomonas campestris pv. phaseoli inactivation of either gene results in increased sensitivity to killing with organic peroxides. An ahpC1-ohr double mutant was highly sensitive to both growth inhibition and killing treatment with organic peroxides. High level expression of ahpC or ohr only partially complemented the phenotype of the double mutant, suggesting that these genes function synergistically, but through different pathways, to protect Xanthomonas from organic peroxide toxicity. Functional analyses of Ohr and AhpC abilities to degrade organic hydroperoxides revealed that both Ohr and AhpC could degrade tert-butyl hydroperoxide (tBOOH) while the former was more efficient at degrading cumene hydroperoxide (CuOOH). Expression analysis of these genes in the mutants showed no compensatory alterations in the levels of AhpC or Ohr. However, CuOOH induced expression of these genes in the mutants was affected. CuOOH induced ahpC expression was higher in the ohr mutant than in the parental strain; in contrast, the ahpC mutation has no effect on the level of induced ohr expression. These analyses reveal complex physiological roles and expression patterns of seemingly functionally similar genes.  相似文献   

20.
Element content and expression of genes of interest on single cell types, such as stomata, provide valuable insights into their specific physiology, improving our understanding of leaf gas exchange regulation. We investigated how far differences in stomatal conductance (gs) can be ascribed to changes in guard cells functioning in amphistomateous leaves. gs was measured during the day on both leaf sides, on well-watered and drought-stressed trees (two Populus euramericana Moench and two Populus nigra L. genotypes). In parallel, guard cells were dissected for element content and gene expressions analyses. Both were strongly arranged according to genotype, and drought had the lowest impact overall. Normalizing the data by genotype highlighted a structure on the basis of leaf sides and time of day both for element content and gene expression. Guard cells magnesium, phosphorus, and chlorine were the most abundant on the abaxial side in the morning, where gs was at the highest. In contrast, genes encoding H+-ATPase and aquaporins were usually more abundant in the afternoon, whereas genes encoding Ca2+-vacuolar antiporters, K+ channels, and ABA-related genes were in general more abundant on the adaxial side. Our work highlights the unique physiology of each leaf side and their analogous rhythmicity through the day.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号