首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Cleidocranial dysplasia (CCD) is caused by haploinsufficiency in RUNX2 function. We have previously identified a series of RUNX2 mutations in Korean CCD patients, including a novel R131G missense mutation in the Runt‐homology domain. Here, we examine the functional consequences of the RUNX2R131G mutation, which could potentially affect DNA binding, nuclear localization signal, and/or heterodimerization with core‐binding factor‐β (CBF‐β). Immunofluorescence microscopy and western blot analysis with subcellular fractions show that RUNX2R131G is localized in the nucleus. Immunoprecipitation analysis reveals that heterodimerization with CBF‐β is retained. However, precipitation assays with biotinylated oligonucleotides and reporter gene assays with RUNX2 responsive promoters together reveal that DNA‐binding activity and consequently the transactivation of potential of RUNX2R131G is abrogated. We conclude that loss of DNA binding, but not nuclear localization or CBF‐β heterodimerization, causes RUNX2 haploinsufficiency in patients with the RUNX2R131G mutation. Retention of specific functions including nuclear localization and binding to CBF‐β of the RUNX2R131G mutation may render the mutant protein an effective competitor that interferes with wild‐type function. J. Cell. Biochem. 110: 97–103, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
The hydrophilic α‐tocopherol derivative, 2,2,5,7,8‐pentamethyl‐6‐hydroxychromane (PMC), is a promising alternative to vitamin E in clinical applications. Critical vascular inflammation leads to vascular dysfunction and vascular diseases, including atherosclerosis, hypertension and abdominal aortic aneurysms. In this study, we investigated the mechanisms of the inhibitory effects of PMC in vascular smooth muscle cells (VSMCs) exposed to pro‐inflammatory stimuli, lipopolysaccharide (LPS) combined with interferon (IFN)‐γ. Treatment of LPS/IFN‐γ‐stimulated VSMCs with PMC suppressed the expression of inducible nitric oxide synthase (iNOS) and matrix metalloproteinase‐9 in a concentration‐dependent manner. A reduction in LPS/IFN‐γ‐induced nuclear factor (NF)‐κB activation was also observed in PMC‐treated VSMCs. The translocation and phosphorylation of p65, protein phosphatase 2A (PP2A) inactivation and the formation of reactive oxygen species (ROS) were significantly inhibited by PMC in LPS/IFN‐γ‐activated VSMCs. However, neither IκBα degradation nor IκB kinase (IKK) or ribosomal s6 kinase‐1 phosphorylation was affected by PMC under these conditions. Both treatments with okadaic acid, a PP2A‐selective inhibitor, and transfection with PP2A siRNA markedly reversed the PMC‐mediated inhibition of iNOS expression, NF‐κB‐promoter activity and p65 phosphorylation. Immunoprecipitation analysis of the cellular extracts of LPS/IFN‐γ‐stimulated VSMCs revealed that p65 colocalizes with PP2A. In addition, p65 phosphorylation and PP2A inactivation were induced in VSMCs by treatment with H2O2, but neither IκBα degradation nor IKK phosphorylation was observed. These results collectively indicate that the PMC‐mediated inhibition of NF‐κB activity in LPS/IFN‐γ‐stimulated VSMCs occurs through the ROS‐PP2A‐p65 signalling cascade, an IKK‐IκBα‐independent mechanism. Therapeutic interventions using PMC may therefore be beneficial for the treatment of vascular inflammatory diseases.  相似文献   

6.
7.
8.
9.
10.
11.
Secreted phosphoprotein‐24 kDa (Spp24) binds cytokines of the bone morphogenetic protein/transforming growth factor‐β (BMP/TGFβ) superfamily and is one of the most abundant serum phosphoproteins synthesized by the liver. Little is known about how Spp24 binding affects BMP signal transduction and osteoblastic differentiation or how this labile protein is transported from the liver to remote tissues, such as bone. When Spp24 was administered to W‐20‐17 mesenchymal stem cells with rhBMP‐2, short‐term Smad1/5 phosphorylation was inhibited, intermediate‐term alkaline phosphatase (ALP) induction was blunted, and long‐term mineralization was unaffected. This supports the hypothesis that Spp24 proteolysis restricts the duration of its regulatory effects, but offers no insight into how Spp24 is transported intact from the liver to bone. When Spp24 was immunopurified from serum and subjected to native PAGE and Western blotting, a high molecular weight band of >500 kDa was found. Under reducing SDS–PAGE, a 24 kDa band corresponding to monomeric Spp24 was liberated, suggesting that Spp24 is bound to a complex linked by disulfide bonds. However, such a complex cannot be disrupted by 60 mM EDTA under non‐reducing condition or in purification buffers containing 600 mM NaCl and 0.1% Tween‐20 at pH 2.7–8.5. LC–MS/MS analysis of affinity‐purified, non‐reducing SDS–PAGE separated, and trypsin digested bands showed that the Spp24 was present in a complex with three α2‐macroglobulins (α2‐macroglobulin [α2M], pregnancy zone protein [PZP] and complement C3 [C3]), as well as ceruloplasmin and the protease inhibitor anti‐thrombin III (Serpin C1), which may protect Spp24 from proteolysis. J. Cell. Biochem. 114: 378–387, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号