首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
The tumor necrosis factor (TNF)‐α converting enzyme (TACE) can cleave the cell‐surface ectodomain of the amyloid‐β precursor protein (APP), thus decreasing the generation of amyloid‐β (Aβ) by cultured non‐neuronal cells. While the amyloidogenic processing of APP in neurons is linked to the pathogenesis of Alzheimer's disease (AD), the expression of TACE in neurons has not yet been examined. Thus, we assessed TACE expression in a series of neuronal and non‐neuronal cell types by Western blots. We found that TACE was present in neurons and was only faintly detectable in lysates of astrocytes, oligodendrocytes, and microglial cells. Immunohistochemical analysis was used to determine the cellular localization of TACE in the human brain, and its expression was detected in distinct neuronal populations, including pyramidal neurons of the cerebral cortex and granular cell layer neurons in the hippocampus. Very low levels of TACE were seen in the cerebellum, with Purkinje cells at the granular‐molecular boundary staining faintly. Because TACE was localized predominantly in areas of the brain that are affected by amyloid plaques in AD, we examined its expression in a series of AD brains. We found that AD and control brains showed similar levels of TACE staining, as well as similar patterns of TACE expression. By double labeling for Aβ plaques and TACE, we found that TACE‐positive neurons often colocalized with amyloid plaques in AD brains. These observations support a neuronal role for TACE and suggest a mechanism for its involvement in AD pathogenesis as an antagonist of Aβ formation. © 2001 John Wiley & Sons, Inc. J Neurobiol 49: 40–46, 2001  相似文献   

2.
Alzheimer′s disease (AD) is characterized by deposition of amyloid plaques, neurofibrillary tangles, and neuroinflammation. In order to study microglial contribution to amyloid plaque phagocytosis, we developed a novel ex vivo model by co‐culturing organotypic brain slices from up to 20‐month‐old, amyloid‐bearing AD mouse model (APPPS1) and young, neonatal wild‐type (WT) mice. Surprisingly, co‐culturing resulted in proliferation, recruitment, and clustering of old microglial cells around amyloid plaques and clearance of the plaque halo. Depletion of either old or young microglial cells prevented amyloid plaque clearance, indicating a synergistic effect of both populations. Exposing old microglial cells to conditioned media of young microglia or addition of granulocyte‐macrophage colony‐stimulating factor (GM‐CSF) was sufficient to induce microglial proliferation and reduce amyloid plaque size. Our data suggest that microglial dysfunction in AD may be reversible and their phagocytic ability can be modulated to limit amyloid accumulation. This novel ex vivo model provides a valuable system for identification, screening, and testing of compounds aimed to therapeutically reinforce microglial phagocytosis.  相似文献   

3.
    
β‐Secretase (β‐site amyloid precursor protein‐cleaving enzyme 1; BACE1) is a transmembrane aspartic protease that cleaves the β‐amyloid precursor protein en route to generation of the amyloid β‐peptide (Aβ) that is believed to be responsible for the Alzheimer's disease amyloid cascade. It is thus a prime target for the development of inhibitors which may serve as drugs in the treatment and/or prevention of Alzheimer's disease. In the following determination of the crystal structures of both apo and complexed BACE1, structural analysis of all crystal structures of BACE1 deposited in the PDB and molecular dynamics (MD) simulations of monomeric and `dimeric' BACE1 were used to study conformational changes in the active‐site region of the enzyme. It was observed that a flap able to cover the active site is the most flexible region, adopting multiple conformational states in the various crystal structures. Both the presence or absence of an inhibitor within the active site and the crystal packing are shown to influence the flap's conformation. An open conformation of the flap is mostly observed in the apo structures, while direct hydrogen‐bonding interaction between main‐chain atoms of the flap and the inhibitor is a prerequisite for the flap to adopt a closed conformation in the crystal structures of complexes. Thus, a systematic study of the conformational flexibility of the enzyme may not only contribute to structure‐based drug design of BACE1 inhibitors and of other targets with flexible conformations, but may also help to better understand the mechanistic events associated with the binding of substrates and inhibitors to the enzyme.  相似文献   

4.
    
Both senile plaques and intracellular neurofibrillary tangles are important pathological characteristics in Alzheimer's disease. However, the relationship between Aβ deposition and tau hyperphosphorylation is unknown. In this study, the increased levels of full‐length amyloid precursor protein (APP), APP C‐terminal fragment (β‐CTF) and BACE1 were found in streptozotocin‐induced tau hyperphosphorylation models by quantitative polymerase chain reaction, Western blotting and immunohistochemistry methods. In the previous studies, few strategies focusing on inhibiting β‐secretase (BACE1) in a tau hyperphosphorylation model were utilized. Here, BACE1 RNAi was used to treat the streptozotocin‐induced tau hyperphosphorylation animal models. BACE1 RNAi treatment improved the behavioural ability of animal models and reduced the amount of Aβ1‐40 and Aβ1‐42, accompanied by decreasing the levels of BACE1 and β‐CTF. Our results demonstrated that neurological defects and neurotoxic fragments, including Aβ and β‐CTF, were eliminated by BACE1 RNAi in the tau hyperphosphorylated model, implying the efficiency and safety of BACE1RNAi treatment against Alzheimer's disease. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
    
Membrane proteins are constantly being trafficked in cells and the relevant proteins in Alzheimer's disease (AD), such as the amyloid precursor protein (APP) and its processing enzymes, are not exempted from that. Molecular cell biologists have been endeavoring to ascertain a roadmap for APP processing and trafficking in various cell types including neurons. This has led to the identification of numerous regulatory sorting mechanisms, protein-protein interactions and lipidic microenvironments that largely define how and where the substrate APP meets its processing enzymes. However, the cell biology of tau, and the formation of neurofibrillary tangles, has long been regarded as a separate field. Nonetheless, recent progress is bringing both worlds together in a new paradigm on how Aβ toxicity and tau are physiologically connected. Here, we discuss an update of our current appraisal on how membrane trafficking may play an important role in the pathogenesis of the disease and how this could be exploited for effective therapy.  相似文献   

6.
7.
8.
The involvement of beta-secretase (BACE1; beta-site APP-cleaving enzyme) in producing the beta-amyloid component of plaques found in the brains of Alzheimer's patients, has fueled a major research effort to characterize this protease. Here, we describe work toward understanding the substrate specificity of BACE1 that began by considering the natural APP substrate and its Swedish mutant, APPSw, and proceeded on to include oxidized insulin B chain and ubiquitin substrates. From these findings, and the study of additional synthetic peptides, we determined that a decapeptide derived from APP in which the P3-P2' sequence, ...VKM--DA..., was replaced by ...ISY--EV... (-- = beta site of cleavage), yielded a substrate that was cleaved by BACE1 seven times faster than the corresponding APPSw peptide, SEVNL--DAEFR. The expanded peptide, GLTNIKTEEISEISY--EVEFRWKK, was cleaved an additional seven times faster than its decapeptide counterpart (boldface), and provides a substrate allowing assay of BACE1 at picomolar concentrations. Several APP mutants reflecting these beta-site amino acid changes were prepared as the basis for cellular assays. The APPISYEV mutant proved to be a cellular substrate that was superior to APPSw. The assay based on APPISYEV is highly specific for measuring BACE1 activity in cells; its homolog, BACE2, barely cleaved APPISYEV at the beta-site. Insertion of the optimized ISY--EV motif at either the beta-site (Asp1) or beta'-site (Glu11) directs the rate of cellular processing of APP at these two accessible sites. Thus, we have identified optimal BACE1 substrates that will be useful to elucidate the cellular enzymatic actions of BACE1, and for design of inhibitors that might be of therapeutic benefit in Alzheimer's disease.  相似文献   

9.
目的:在tau过磷酸化大鼠中,通过检测淀粉样前体蛋白(amyloid precursor protein,APP)C末端片段的表达,研究抑制β-分泌酶(BACE1)对其代谢的影响及机制。方法:24只SD大鼠随机分为四组,包括正常对照组、假手术组、OA组、OA+BACE1抑制剂组。Western blot法检测β-CTF、APP及BACE1表达;RT-PCR法检测APP及BACE1;水迷宫检测大鼠行为学。结果:OA组β-CTF表达显著增加(p0.05),而OA+BACE1抑制剂组与OA组相比,β-CTF表达减少(p0.05);四组大鼠的APP在蛋白及mRNA水平表达无显著差别(p0.05);OA组BACE1在蛋白及mRNA水平的表达增加,而OA+BACE1抑制剂组BACE1的蛋白表达较OA组减少(p0.05),两组大鼠mRNA表达水平无明显差异(p0.05)。OA+BACE1抑制剂组大鼠在给予BACE1抑制剂后行为学有所改善(p0.05)。结论:(1)tau过磷酸化通过促进神经元内BACE1表达,导致APP代谢途径发生转变,从而引起β-CTF表达增加;(2)β-CTF表达增加可引起tau过磷酸化大鼠行为学改变;(3)抑制BACE1可改善大鼠的学习及记忆能力,支持BACE1作为AD的治疗靶点。  相似文献   

10.
APP processing is regulated by cytoplasmic phosphorylation   总被引:14,自引:0,他引:14       下载免费PDF全文
Amyloid-beta peptide (Abeta) aggregate in senile plaque is a key characteristic of Alzheimer's disease (AD). Here, we show that phosphorylation of amyloid precursor protein (APP) on threonine 668 (P-APP) may play a role in APP metabolism. In AD brains, P-APP accumulates in large vesicular structures in afflicted hippocampal pyramidal neurons that costain with antibodies against endosome markers and the beta-secretase, BACE1. Western blot analysis reveals increased levels of T668-phosphorylated APP COOH-terminal fragments in hippocampal lysates from many AD but not control subjects. Importantly, P-APP cofractionates with endosome markers and BACE1 in an iodixanol gradient and displays extensive colocalization with BACE1 in rat primary cortical neurons. Furthermore, APP COOH-terminal fragments generated by BACE1 are preferentially phosphorylated on T668 verses those produced by alpha-secretase. The production of Abeta is significantly reduced when phosphorylation of T668 is either abolished by mutation or inhibited by T668 kinase inhibitors. Together, these results suggest that T668 phosphorylation may facilitate the BACE1 cleavage of APP to increase Abeta generation.  相似文献   

11.
12.
    
Alzheimer's disease is associated with abnormal accumulation of Aβ, which is produced from the β‐amyloid precursor protein (APP) by the β‐site APP‐cleaving enzyme (BACE1) and γ‐secretase. Our previous studies showed that heparin can decrease APP processing by decreasing the levels of BACE1 and ADAM10. In this study, we examined the effects of glycosaminoglycans (GAGs) on APP processing and Aβ production with the aim of understanding the specificity of the effects. Various GAG analogs were incubated with primary cortical cells derived from APP (SW)Tg2576 mice and the level of APP, proteolytic products of APP and APP‐cleavage enzymes were measured. The effect of GAGs on APP processing was both size‐ and sulfation‐dependent. 6‐O‐Sulfation was important for the effect on APP processing as heparin lacking 6‐O sulfate were less potent than native heparin. However, deletion of carboxyl groups on heparin had no significant effect on APP processing. Our studies suggest that there is structural specificity to the effect of GAGs on APP processing and that certain GAGs have a greater effect on Aβ production than others. This suggests that it might be possible to alter the structure of GAGs to achieve more specific inhibitors of APP processing that can cross the blood–brain barrier.  相似文献   

13.
Memapsin 2 (BACE1, β‐secretase), a membrane aspartic protease, functions in the cleavage of brain β‐amyloid precursor protein (APP) leading to the production of β‐amyloid. Because the excess level of β‐amyloid in the brain is a leading factor in Alzheimer's disease (AD), memapsin 2 is a major therapeutic target for inhibitor drugs. The substrate‐binding cleft of memapsin 2 accommodates 12 subsite residues, from P8 to P4′. We have determined the hydrolytic preference as relative kcat/KM (preference constant) in all 12 subsites and used these data to establish a predictive algorithm for substrate hydrolytic efficiency. Using the sequences from 12 reported memapsin 2 protein substrates, the predicted and experimentally determined preference constants have an excellent correlation coefficient of 0.97. The predictive model indicates that the hydrolytic preference of memapsin 2 is determined mainly by the interaction with six subsites (from P4 to P2′), a conclusion supported by the crystal structure B‐factors calculated for the various residues of transition‐state analogs bound to different memapsin 2 subsites. The algorithm also predicted that the replacement of the P3, P2, and P1 subsites of APP from Val, Lys, and Met, respectively, to Ile, Asp, and Phe, respectively, (APPIDF) would result in a highest hydrolytic rate for β‐amyloid‐generating APP variants. Because more β‐amyloid was produced from cells expressing APPIDF than those expressing APP with Swedish mutations, this designed APP variant may be useful in new memapsin 2 substrates or transgenic mice for AD studies.  相似文献   

14.
15.
    
Intracellular accumulation of oligomeric forms of β amyloid (Aβ) are now believed to play a key role in the earliest phase of Alzheimer's disease (AD) as their rise correlates well with the early symptoms of the disease. Extensive evidence points to impaired neuronal Ca2+ homeostasis as a direct consequence of the intracellular Aβ oligomers. However, little is known about the downstream effects of the resulting Ca2+ rise on the many intracellular Ca2+-dependent pathways. Here we use multiscale modeling in conjunction with patch-clamp electrophysiology of single inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) and fluorescence imaging of whole-cell Ca2+ response, induced by exogenously applied intracellular Aβ42 oligomers to show that Aβ42 inflicts cytotoxicity by impairing mitochondrial function. Driven by patch-clamp experiments, we first model the kinetics of IP3R, which is then extended to build a model for the whole-cell Ca2+ signals. The whole-cell model is then fitted to fluorescence signals to quantify the overall Ca2+ release from the endoplasmic reticulum by intracellular Aβ42 oligomers through G-protein-mediated stimulation of IP3 production. The estimated IP3 concentration as a function of intracellular Aβ42 content together with the whole-cell model allows us to show that Aβ42 oligomers impair mitochondrial function through pathological Ca2+ uptake and the resulting reduced mitochondrial inner membrane potential, leading to an overall lower ATP and increased production of reactive oxygen species and H2O2. We further show that mitochondrial function can be restored by the addition of Ca2+ buffer EGTA, in accordance with the observed abrogation of Aβ42 cytotoxicity by EGTA in our live cells experiments.  相似文献   

16.
    
Given that amyloid‐β 42 (Aβ42) is believed to be a culprit in Alzheimer's disease (AD), reducing Aβ42 production should be a potential therapeutic approach. γ‐Secretase modulators (GSMs) cause selective reduction of Aβ42 or both reduction of Aβ42 and Aβ40 without affecting total Aβ through shifting the γ‐cleavage position in amyloid precursor protein. We recently reported on GSM‐2, one of the second‐generation GSMs, that selectively reduced brain Aβ42 level and significantly ameliorated cognitive deficits in plaque‐free 5.5‐month‐old Tg2576 AD model mice. Here, we investigated the effects of GSM‐2 on 10‐, 14‐, and 18‐month‐old mice which had age‐dependent increase in amyloid plaques. Eight‐day treatment with GSM‐2 significantly ameliorated cognitive deficits measured by Y‐maze task in the mice of any age. However, GSM‐2 reduced brain soluble Aβ42 only in 10‐month‐old mice. In contrast, GSM‐2 markedly reduced newly synthesized soluble Aβ42 in both 10‐ and 18‐month‐old mice with similar efficacy when measured using the stable isotope‐labeling technique, suggesting that nascent Aβ42 plays a more significant role than plaque‐associated soluble Aβ42 in the cognitive deterioration of Tg2576 mice. These findings further indicate the potential utility of approach to reducing Aβ42 synthesis in AD therapeutic regimens.  相似文献   

17.
18.
    
The deposition of amyloid‐β (Aβ) peptide, which is generated from amyloid precursor protein (APP), is the pathological hallmark of Alzheimer's disease (AD). Three APP familial AD mutations (D678H, D678N, and H677R) located at the sixth and seventh amino acid of Aβ have distinct effect on Aβ aggregation, but their influence on the physiological and pathological roles of APP remain unclear. We found that the D678H mutation strongly enhances amyloidogenic cleavage of APP, thus increasing the production of Aβ. This enhancement of amyloidogenic cleavage is likely because of the acceleration of APPD678H sorting into the endosomal‐lysosomal pathway. In contrast, the APPD678N and APPH677R mutants do not cause the same effects. Therefore, this study indicates a regulatory role of D678H in APP sorting and processing, and provides genetic evidence for the importance of APP sorting in AD pathogenesis.

  相似文献   


19.
20.
  总被引:1,自引:0,他引:1  
Although soluble oligomeric and protofibrillar assemblies of Abeta-amyloid peptide cause synaptotoxicity and potentially contribute to Alzheimer's disease (AD), the role of mature Abeta-fibrils in the amyloid plaques remains controversial. A widely held view in the field suggests that the fibrillization reaction proceeds 'forward' in a near-irreversible manner from the monomeric Abeta peptide through toxic protofibrillar intermediates, which subsequently mature into biologically inert amyloid fibrils that are found in plaques. Here, we show that natural lipids destabilize and rapidly resolubilize mature Abeta amyloid fibers. Interestingly, the equilibrium is not reversed toward monomeric Abeta but rather toward soluble amyloid protofibrils. We characterized these 'backward' Abeta protofibrils generated from mature Abeta fibers and compared them with previously identified 'forward' Abeta protofibrils obtained from the aggregation of fresh Abeta monomers. We find that backward protofibrils are biochemically and biophysically very similar to forward protofibrils: they consist of a wide range of molecular masses, are toxic to primary neurons and cause memory impairment and tau phosphorylation in mouse. In addition, they diffuse rapidly through the brain into areas relevant to AD. Our findings imply that amyloid plaques are potentially major sources of soluble toxic Abeta-aggregates that could readily be activated by exposure to biological lipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号