首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cannabinoid type 2 (CB2) receptor plays an important role in neuroinflammatory and neurodegenerative diseases such as multiple sclerosis, amyotrophic lateral sclerosis, and Alzheimer's disease and is therefore a very promising target for therapeutic approaches as well as for imaging. Based on the literature, we identified one 4‐oxoquinoline derivative (designated KD2) as the lead structure. It was synthesized, radiolabeled and evaluated as a potential imaging tracer for CB2. [11C]KD2 was obtained in 99% radiochemical purity. Moderate blood–brain barrier (BBB) passage was predicted for KD2 from an in vitro transport assay with P‐glycoprotein‐transfected Madin Darby canine kidney cells. No efflux of KD2 by P‐glycoprotein was detected. In vitro autoradiography of rat and mouse spleen slices demonstrated that [11C]KD2 exhibits high specific binding towards CB2. High spleen uptake of [11C]KD2 was observed in dynamic positron emission tomography (PET) studies with Wistar rats and its specificity was confirmed by displacement study with a selective CB2 agonist, GW405833. A pilot autoradiography study with post‐mortem spinal cord slices from amyotrophic lateral sclerosis (ALS) patients with [11C]KD2 suggested the presence of CB2 receptors under disease conditions. Specificity of [11C]KD2 binding could also be demonstrated on these human tissues. In conclusion, [11C]KD2 shows good in vitro and in vivo properties as a potential PET tracer for CB2.

  相似文献   


2.
3.
4.
Chronic stress represents a major environmental risk factor for mood disorders in vulnerable individuals. The neurobiological mechanisms underlying these disorders involve serotonergic and endocannabinoid systems. In this study, we have investigated the relationships between these two neurochemical systems in emotional control using genetic and imaging tools. CB1 cannabinoid receptor knockout mice (KO) and wild‐type littermates (WT) were exposed to chronic restraint stress. Depressive‐like symptoms (anhedonia and helplessness) were produced by chronic stress exposure in WT mice. CB1 KO mice already showed these depressive‐like manifestations in non‐stress conditions and the same phenotype was observed after chronic restraint stress. Chronic stress similarly impaired long‐term memory in both genotypes. In addition, brain levels of serotonin transporter (5‐HTT) were assessed using positron emission tomography. Decreased brain 5‐HTT levels were revealed in CB1 KO mice under basal conditions, as well as in WT mice after chronic stress. Our results show that chronic restraint stress induced depressive‐like behavioral alterations and brain changes in 5‐HTT levels similarly to those revealed in CB1 KO mice in non‐stressed conditions. These results underline the relevance of chronic environmental stress on serotonergic and endocannabinoid transmission for the development of depressive symptoms.

  相似文献   


5.
Serotonin (5‐HT)2C receptors play a role in psychoaffective disorders and often contribute to the antidepressant and anxiolytic effects of psychotropic drugs. During stress, activation of these receptors exerts a negative feedback on 5‐HT release, probably by increasing the activity of GABAergic interneurons. However, to date, the GABA receptor types that mediate the 5‐HT2C receptor‐induced feedback inhibition are still unknown. To address this question, we assessed the inhibition of 5‐HT turnover by a 5‐HT2C receptor agonist (RO 60‐0175) at the hippocampal level and under conditions of stress, after pharmacological or genetic inactivation of either GABA‐A or GABA‐B receptors in mice. Neither the GABA‐B receptor antagonist phaclofen nor the specific genetic ablation of either GABA‐B1a or GABA‐B1b subunits altered the inhibitory effect of RO 60‐0175, although 5‐HT turnover was markedly decreased in GABA‐B1a knock‐out mice in both basal and stress conditions. In contrast, the 5‐HT2C receptor‐mediated inhibition of 5‐HT turnover was reduced by the GABA‐A receptor antagonist bicuculline. However, a significant effect of 5‐HT2C receptor activation persisted in mutant mice deficient in the α3 subunit of GABA‐A receptors. It can be inferred that non‐α3 subunit‐containing GABA‐A receptors, but not GABA‐B receptors, mediate the 5‐HT2C‐induced inhibition of stress‐induced increase in hippocampal 5‐HT turnover in mice.

  相似文献   


6.
Kiss1, a neuropeptide predominantly expressed in the habenula, modulates the serotonin (5‐HT) system to decrease odorant cue [alarm substance (AS)]‐evoked fear behaviour in the zebrafish. The purpose of this study was to assess the interaction of Kiss1 with the 5‐HT system as well as to determine the involvement of the 5‐HT receptor subtypes in AS‐evoked fear. We utilized 0. 28 mg/kg WAY 100635 (WAY), a selective 5‐HT1A receptor antagonist, to observe the effects of Kiss1 administration on AS‐evoked fear. We found WAY significantly inhibited the anxiolytic effects of Kiss1 (< 0.001) with an exception of freezing behaviour. Based on this, we utilized 92.79 mg/kg methysergide, a 5‐HT1 and 5‐HT2 receptor antagonist, and found that methysergide significantly blocked the anxiolytic effects of Kiss1 in the presence of the AS (< 0.001). From this, we conclude that Kiss1 modulates AS‐evoked fear responses mediated by the 5‐HT1A and 5‐HT2 receptors.

  相似文献   


7.
The consumption of ethanol by pregnant women may cause neurological abnormalities, affecting learning and memory processes in children, and are collectively described as fetal alcohol spectrum disorders. However, the molecular mechanisms underlying these changes are still poorly understood. In our previous studies, we found that ethanol treatment of postnatal day 7 (P7) mice significantly enhances the anandamide levels but not the 2‐arachidonylglycerol (2‐AG) levels and induces widespread neurodegeneration, but the reason for the lack of significant effects of ethanol on the 2‐AG level is unknown. In this study, we examined developmental changes in diacylglycerol lipase‐α, β (DAGL‐α and β) and monoacylglycerol lipase (MAGL). We found that the levels of these proteins were significantly higher in adult brains compared to those detected early in brain development. Next, we examined the influence of P7 ethanol treatment on these enzymes, finding that it differentially altered the DAGL‐α protein and mRNA levels but consistently enhanced those of the DAGL‐β. Interestingly, the ethanol treatment enhanced MAGL protein and mRNA levels. Inhibition of MAGL with KML29 failed to induce neurodegeneration in P7 mice. Collectively, these findings suggest that ethanol significantly activates DAGL‐β and MAGL in the neonatal brain, resulting in no net change in 2‐AG levels.

  相似文献   


8.
We reconstituted D2 like dopamine receptor (D2R) and the delta opioid receptor (DOR) coupling to G‐protein gated inwardly rectifying potassium channels (Kir3) and directly compared the effects of co‐expression of G‐protein coupled receptor kinase (GRK) and arrestin on agonist‐dependent desensitization of the receptor response. We found, as described previously, that co‐expression of a GRK and an arrestin synergistically increased the rate of agonist‐dependent desensitization of DOR. In contrast, only arrestin expression was required to produce desensitization of D2R responses. Furthermore, arrestin‐dependent GRK‐independent desensitization of D2R‐Kir3 coupling could be transferred to DOR by substituting the third cytoplasmic loop of DOR with that of D2R. The arrestin‐dependent GRK‐independent desensitization of D2R desensitization was inhibited by staurosporine treatment, and blocked by alanine substitution of putative protein kinase C phosphorylation sites in the third cytoplasmic loop of D2R. Finally, the D2R construct in which putative protein kinase C phosphorylation sites were mutated did not undergo significant agonist‐dependent desensitization even after GRK co‐expression, suggesting that GRK phosphorylation of D2R does not play an important role in uncoupling of the receptor.

  相似文献   


9.
As an endogenous gaseous molecule, hydrogen sulfide (H2S) has attracted extensive attention because of its multiple biological effects. However, the effect of H2S on amygdala‐mediated emotional memory has not been elucidated. Here, by employing Pavlovian fear conditioning, an animal model widely used to explore the neural substrates of emotion, we determined whether H2S could regulate emotional memory. It was shown that the H2S levels in the amygdala of rats were significantly elevated after cued fear conditioning. Both intraamygdala and systemic administrations of H2S markedly enhanced amygdala‐dependent cued fear memory in rats. Moreover, it was found that H2S selectively increased the surface expression and currents of NMDA‐type glutamate receptor subunit 2B (GluN2B)‐containing NMDA receptors (NMDARs) in lateral amygdala of rats, whereas blockade of GluN2B‐containing NMDARs in lateral amygdala eliminated the effects of H2S to enhance amygdalar long‐term potentiation and cued fear memory. These results demonstrate that H2S can regulate amygdala‐dependent emotional memory by promoting the function of GluN2B‐containing NMDARs in amygdala, suggesting that H2S‐associated signaling may hold potential as a new target for the treatment of emotional disorders.

  相似文献   


10.
Gq/11 protein‐coupled human histamine H1 receptors in Chinese hamster ovary cells stimulated with histamine undergo clathrin‐dependent endocytosis followed by proteasome/lysosome‐mediated down‐regulation. In this study, we evaluated the effects of a sustained increase in intracellular Ca2+ concentrations induced by a receptor‐bypassed stimulation with ionomycin, a Ca2+ ionophore, on the endocytosis and down‐regulation of H1 receptors in Chinese hamster ovary cells. All cellular and cell‐surface H1 receptors were detected by the binding of [3H]mepyramine to intact cells sensitive to the hydrophobic and hydrophilic H1 receptor ligands, mepyramine and pirdonium, respectively. The pretreatment of cells with ionomycin markedly reduced the mepyramine‐ and pirdonium‐sensitive binding sites of [3H]mepyramine, which were completely abrogated by the deprivation of extracellular Ca2+ and partially by a ubiquitin‐activating enzyme inhibitor (UBEI‐41), but were not affected by inhibitors of calmodulin (W‐7 or calmidazolium) and protein kinase C (chelerythrine or GF109203X). These ionomycin‐induced changes were also not affected by inhibitors of receptor endocytosis via clathrin (hypertonic sucrose) and caveolae/lipid rafts (filipin or nystatin) or by inhibitors of lysosomes (E‐64, leupeptin, chloroquine, or NH4Cl), proteasomes (lactacystin or MG‐132), and a Ca2+‐dependent non‐lysosomal cysteine protease (calpain) (MDL28170). Since H1 receptors were normally detected by confocal immunofluorescence microscopy with an antibody against H1 receptors, even after the ionomycin treatment, H1 receptors appeared to exist in a form to which [3H]mepyramine was unable to bind. These results suggest that H1 receptors are apparently down‐regulated by a sustained increase in intracellular Ca2+ concentrations with no process of endocytosis and lysosomal/proteasomal degradation of receptors.

  相似文献   


11.
The cadherin epidermal growth factor (EGF) laminin G (LAG) seven‐pass G‐type receptors (CELSRs) are a special subgroup of adhesion G protein‐coupled receptors, which are pivotal regulators of many biologic processes such as neuronal/endocrine cell differentiation, vessel valve formation, and the control of planar cell polarity during embryonic development. All three members of the CELSR family (CELSR1‐3) have large ecto‐domains that form homophilic interactions and encompass more than 2000 amino acids. Mutations in the ecto‐domain or other gene locations of CELSRs are associated with neural tube defects and other diseases in humans. Celsr knockout (KO) animals have many developmental defects. Therefore, specific agonists or antagonists of CELSR members may have therapeutic potential. Although significant progress has been made regarding the functions and biochemical properties of CELSRs, our knowledge of these receptors is still lacking, especially considering that they are broadly distributed but have few characterized functions in a limited number of tissues. The dynamic activation and inactivation of CELSRs and the presence of endogenous ligands beyond homophilic interactions remain elusive, as do the regulatory mechanisms and downstream signaling of these receptors. Given this motivation, future studies with more advanced cell biology or biochemical tools, such as conditional KO mice, may provide further insights into the mechanisms underlying CELSR function, laying the foundation for the design of new CELSR‐targeted therapeutic reagents.

  相似文献   


12.
Zinc (Zn2+) is believed to play a relevant role in the physiology and pathophysiology of the brain. Hence, Zn2+ homeostasis is critical and involves different classes of molecules, including Zn2+ transporters. The ubiquitous Zn2+ transporter‐1 (ZNT‐1) is a transmembrane protein that pumps cytosolic Zn2+ to the extracellular space, but its function in the central nervous system is not fully understood. Here, we show that ZNT‐1 interacts with GluN2A‐containing NMDA receptors, suggesting a role for this transporter at the excitatory glutamatergic synapse. First, we found that ZNT‐1 is highly expressed at the hippocampal postsynaptic density (PSD) where NMDA receptors are enriched. Two‐hybrid screening, coimmunoprecipitation experiments and clustering assay in COS‐7 cells demonstrated that ZNT‐1 specifically binds the GluN2A subunit of the NMDA receptor. GluN2A deletion mutants and pull‐down assays indicated GluN2A(1390–1464) domain as necessary for the binding to ZNT‐1. Most importantly, ZNT‐1/GluN2A complex was proved to be dynamic, since it was regulated by induction of synaptic plasticity. Finally, modulation of ZNT‐1 expression in hippocampal neurons determined a significant change in dendritic spine morphology, PSD‐95 clusters and GluN2A surface levels, supporting the involvement of ZNT‐1 in the dynamics of excitatory PSD.

  相似文献   


13.
A lesion to the rat rubrospinal tract is a model for traumatic spinal cord lesions and results in atrophy of the red nucleus neurons, axonal dieback, and locomotor deficits. In this study, we used adeno‐associated virus (AAV)‐mediated over‐expression of BAG1 and ROCK2‐shRNA in the red nucleus to trace [by co‐expression of enhanced green fluorescent protein (EGFP)] and treat the rubrospinal tract after unilateral dorsal hemisection. We investigated the effects of targeted gene therapy on neuronal survival, axonal sprouting of the rubrospinal tract, and motor recovery 12 weeks after unilateral dorsal hemisection at Th8 in rats. In addition to the evaluation of BAG1 and ROCK2 as therapeutic targets in spinal cord injury, we aimed to demonstrate the feasibility and the limits of an AAV‐mediated protein over‐expression versus AAV.shRNA‐mediated down‐regulation in this traumatic CNS lesion model. Our results demonstrate that BAG1 and ROCK2‐shRNA both promote neuronal survival of red nucleus neurons and enhance axonal sprouting proximal to the lesion.

  相似文献   


14.
15.
The N‐acylethanolamines (NAEs) exert important behavioral, physiological, and immunological effects through actions at cannabinoid and other receptors. We measured concentrations of three NAEs, the Km and Vmax for fatty acid amide hydrolysis (FAAH), FAAH protein and FAAH mRNA in prefrontal cortex, hippocampus, hypothalamus, amygdala, striatum, and cerebellum at 4 h intervals, starting at 03:00. Significant differences in N‐arachidonylethanolamine contents among the times examined occur in the prefrontal cortex (PFC), hippocampus, hypothalamus, and striatum. N‐Oleoylethanolamine concentrations exhibit large fluctuations over the day in the cerebellum, including a threefold decrease between 19:00 and 23:00. N‐Palmitoylethanolamine and N‐oleoylethanolamine were significantly, positively correlated in all regions examined except the hypothalamus. FAAH Km values are significantly affected by time of day in PFC, hippocampus and amygdala and FAAH Vmax values are significantly affected in PFC, hippocampus and cerebellum. However, correlational data indicate that FAAH does not play a primary role in the circadian regulation of the NAE concentrations. FAAH protein expression is not significantly different among the harvest times in any brain region examined. Concentrations of 2‐arachidonoylglycerol are significantly affected by time of harvest in the striatum and cerebellum, but not in other brain regions. Together, these data indicate that the NAEs exhibit diverse patterns of change with time of day that are likely the result of alterations in biosynthesis, and support the hypothesis that N‐arachidonylethanolamine is a tonic activator of cannabinoid receptor signaling.

  相似文献   


16.
Dysregulated metabolism and consequent extracellular accumulation of amyloid‐β (Aβ) peptides in the brain underlie the pathogenesis of Alzheimer's disease. Extracellular Aβ in the brain parenchyma is mainly secreted from the pre‐synaptic terminals of neuronal cells in a synaptic activity‐dependent manner. The p24 family member p24α2 reportedly attenuates Aβ generation by inhibiting γ‐secretase processing of amyloid precursor protein; however, the pattern of expression and localization of p24α2 in the brain remains unknown. We performed immunohistochemical staining and subcellular fractionation for p24α2 in the mouse brain. Immunostaining showed that p24α2 is broadly distributed in the gray matter of the central nervous system and is predominantly localized to synapses. Subcellular fractionation revealed prominent localization of p24α2 in the pre‐synaptic terminals. Immunoisolation of synaptic vesicles (SV) indicated that p24α2 is condensed at active zone‐docked SV. During development, p24α2 expression is highest in the post‐natal period and gradually decreases with age. We also confirmed that amyloid precursor protein and γ‐secretase components are localized at active zone‐docked SV. Our results suggest a novel functional role for p24α2 in the regulation of synaptic transmission and synaptogenesis, and provide evidence for the participation of p24α2 in the regulation of Aβ generation and secretion in the brain.

  相似文献   


17.
The tetrodotoxin‐resistant (TTX‐R) voltage‐gated sodium channel Nav1.8 is predominantly expressed in peripheral afferent neurons, but in case of neuronal injury an ectopic and detrimental expression of Nav1.8 occurs in neurons of the CNS. In CNS neurons, Nav1.2 and Nav1.6 channels accumulate at the axon initial segment, the site of the generation of the action potential, through a direct interaction with the scaffolding protein ankyrin G (ankG). This interaction is regulated by protein kinase CK2 phosphorylation. In this study, we quantitatively analyzed the interaction between Nav1.8 and ankG. GST pull‐down assay and surface plasmon resonance technology revealed that Nav1.8 strongly and constitutively interacts with ankG, in comparison to what observed for Nav1.2. An ion channel bearing the ankyrin‐binding motif of Nav1.8 displaced the endogenous Nav1 accumulation at the axon initial segment of hippocampal neurons. Finally, Nav1.8 and ankG co‐localized in skin nerves fibers. Altogether, these results indicate that Nav1.8 carries all the information required for its localization at ankG micro‐domains. The constitutive binding of Nav1.8 with ankG could contribute to the pathological aspects of illnesses where Nav1.8 is ectopically expressed in CNS neurons.

  相似文献   


18.
This study involved mice that received 4 days of ethanol (EtOH) vapor inhalation and then were assessed for type 1 inositol 1,4,5‐trisphosphate receptor (IP3Rs‐1) expression and the development of EtOH‐induced place preference at various time points in withdrawal. IP3R‐1 protein was found to be significantly increased in the nucleus accumbens (NAcc) of mice immediately after 4‐day EtOH vapor inhalation, while it significantly reduced to the control level during the next 3 days of withdrawal from EtOH inhalation. EtOH (2 g/kg, i.p.)‐induced place preference after 3 days of withdrawal from EtOH vapor inhalation increased dose dependently for 4 days, which was significantly inhibited by 2‐aminophenoxyethane‐borate, an antagonist for IP3Rs. EtOH conditioning significantly increased, compared to alcohol‐naïve control mice, both IP3R‐1 protein and the release of dopamine in the NAcc of mice after 3 days of withdrawal from EtOH vapor inhaled for 4 days, and this increase of IP3R‐1 protein was completely abolished by intracerebroventricular injection of FK506, an inhibitor for calcineurin. These results indicate that the sensitization of EtOH‐induced place preference is due to up‐regulated IP3R‐1 via calcineurin‐mediated pathway after enhanced release of dopamine in the NAcc on EtOH administration during EtOH conditioning.

  相似文献   


19.
Trafficking of G protein‐coupled receptors plays a crucial role in controlling the precise signalling of the receptor as well as its proper regulation. Metabotropic glutamate receptor 1 (mGluR1), a G protein‐coupled receptor, is a member of the group I mGluR family. mGluR1 plays a critical role in neuronal circuit formation and also in multiple types of synaptic plasticity. This receptor has also been reported to be involved in various neuropsychiatric diseases. Other than the central nervous system, mGluR1 plays crucial roles in various non‐neuronal cells like hepatocytes, skin cells, etc. Although it has been reported that mGluR1 gets endocytosed on ligand application, the events after the internalization of the receptor has not been studied. We show here that mGluR1 internalizes on ligand application. Subsequent to endocytosis, majority of the receptors localize at the recycling compartment and no significant presence of the receptor was noticed in the lysosome. Furthermore, mGluR1 returned to the cell membrane subsequent to ligand‐mediated internalization. We also show here that the recycling of mGluR1 is dependent on the activity of protein phosphatase 2A. Thus, our data suggest that the ligand‐mediated internalized receptors recycle back to the cell surface in protein phosphatase 2A‐dependent manner.

  相似文献   


20.
G protein‐coupled estrogen receptor (GPER) is a relatively recently identified non‐nuclear estrogen receptor, expressed in several tissues, including brain and blood vessels. The mechanisms elicited by GPER activation in brain microvascular endothelial cells are incompletely understood. The purpose of this work was to assess the effects of GPER activation on cytosolic Ca2+ concentration, [Ca2+]i, nitric oxide production, membrane potential and cell nanomechanics in rat brain microvascular endothelial cells (RBMVEC). Extracellular but not intracellular administration of G‐1, a selective GPER agonist, or extracellular administration of 17‐β‐estradiol and tamoxifen, increased [Ca2+]i in RBMVEC. The effect of G‐1 on [Ca2+]i was abolished in Ca2+‐free saline or in the presence of a L‐type Ca2+ channel blocker. G‐1 increased nitric oxide production in RBMVEC; the effect was prevented by NG‐nitro‐l ‐arginine methyl ester. G‐1 elicited membrane hyperpolarization that was abolished by the antagonists of small and intermediate‐conductance Ca2+‐activated K+ channels, apamin, and charibdotoxin. GPER‐mediated responses were sensitive to G‐36, a GPER antagonist. In addition, atomic force microscopy studies revealed that G‐1 increased the modulus of elasticity, indicative of cytoskeletal changes and increase in RBMVEC stiffness. Our results unravel the mechanisms underlying GPER‐mediated effects in RBMVEC with implications for the effect of estrogen on cerebral microvasculature.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号