首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Physical exercise stimulates the release of endogenous opioid peptides supposed to be responsible for changes in mood, anxiety, and performance. Exercise alters sensitivity to these effects that modify the efficacy at the opioid receptor. Although there is evidence that relates exercise to neuropeptide expression in the brain, the effects of exercise on opioid receptor binding and signal transduction mechanisms downstream of these receptors have not been explored. Here, we characterized the binding and G protein activation of mu opioid receptor, kappa opioid receptor or delta opioid receptor in several brain regions following acute (7 days) and chronic (30 days) exercise. As regards short‐ (acute) or long‐term effects (chronic) of exercise, overall, higher opioid receptor binding was observed in acute‐exercise animals and the opposite was found in the chronic‐exercise animals. The binding of [35S]GTPγS under basal conditions (absence of agonists) was elevated in sensorimotor cortex and hippocampus, an effect more evident after chronic exercise. Divergence of findings was observed for mu opioid receptor, kappa opioid receptor, and delta opioid receptor receptor activation in our study. Our results support existing evidence of opioid receptor binding and G protein activation occurring differentially in brain regions in response to diverse exercise stimuli.

  相似文献   


2.
Autophagosome biogenesis requires two ubiquitin‐like conjugation systems. One couples ubiquitin‐like Atg8 to phosphatidylethanolamine, and the other couples ubiquitin‐like Atg12 to Atg5. Atg12~Atg5 then forms a heterodimer with Atg16. Membrane recruitment of the Atg12~Atg5/Atg16 complex defines the Atg8 lipidation site. Lipidation requires a PI3P‐containing precursor. How PI3P is sensed and used to coordinate the conjugation systems remained unclear. Here, we show that Atg21, a WD40 β‐propeller, binds via PI3P to the preautophagosomal structure (PAS). Atg21 directly interacts with the coiled‐coil domain of Atg16 and with Atg8. This latter interaction requires the conserved F5K6‐motif in the N‐terminal helical domain of Atg8, but not its AIM‐binding site. Accordingly, the Atg8 AIM‐binding site remains free to mediate interaction with its E2 enzyme Atg3. Atg21 thus defines PI3P‐dependently the lipidation site by linking and organising the E3 ligase complex and Atg8 at the PAS.  相似文献   

3.
4.
The accurate cleavage of pre‐micro(mi)RNAs by Dicer and mi/siRNA guide strand selection are important steps in forming the RNA‐induced silencing complex (RISC). The role of Dicer binding partner TRBP in these processes remains poorly understood. Here, we solved the solution structure of the two N‐terminal dsRNA binding domains (dsRBDs) of TRBP in complex with a functionally asymmetric siRNA using NMR, EPR, and single‐molecule spectroscopy. We find that siRNA recognition by the dsRBDs is not sequence‐specific but rather depends on the RNA shape. The two dsRBDs can swap their binding sites, giving rise to two equally populated, pseudo‐symmetrical complexes, showing that TRBP is not a primary sensor of siRNA asymmetry. Using our structure to model a Dicer‐TRBP‐siRNA ternary complex, we show that TRBP's dsRBDs and Dicer's RNase III domains bind a canonical 19 base pair siRNA on opposite sides, supporting a mechanism whereby TRBP influences Dicer‐mediated cleavage accuracy by binding the dsRNA region of the pre‐miRNA during Dicer cleavage.  相似文献   

5.
Microcephaly genes are amongst the most intensively studied genes with candidate roles in brain evolution. Early controversies surrounded the suggestion that they experienced differential selection pressures in different human populations, but several association studies failed to find any link between variation in microcephaly genes and brain size in humans. Recently, however, sex‐dependent associations were found between variation in three microcephaly genes and human brain size, suggesting that these genes could contribute to the evolution of sexually dimorphic traits in the brain. Here, we test the hypothesis that microcephaly genes contribute to the evolution of sexual dimorphism in brain mass across anthropoid primates using a comparative approach. The results suggest a link between selection pressures acting on MCPH1 and CENPJ and different scores of sexual dimorphism.  相似文献   

6.
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an efficient neurosurgical treatment for advanced Parkinson's disease. Non‐invasive metabolic neuroimaging during the course of DBS in animal models may contribute to our understanding of its action mechanisms. Here, DBS was adapted to in vivo proton magnetic resonance spectroscopy at 11.7 T in the rat to follow metabolic changes in main basal ganglia structures, the striatum, and the substantia nigra pars reticulata (SNr). Measurements were repeated OFF and ON acute and subchronic (7 days) STN‐DBS in control and parkinsonian (6‐hydroxydopamine lesion) conditions. Acute DBS reversed the increases in glutamate, glutamine, and GABA levels induced by the dopamine lesion in the striatum but not in the SNr. Subchronic DBS normalized GABA in both the striatum and SNr, and glutamate in the striatum. Taurine levels were markedly decreased under subchronic DBS in the striatum and SNr in both lesioned and unlesioned rats. Microdialysis in the striatum further showed that extracellular taurine was increased. These data reveal that STN‐DBS has duration‐dependent metabolic effects in the basal ganglia, consistent with development of adaptive mechanisms. In addition to counteracting defects induced by the dopamine lesion, prolonged DBS has proper effects independent of the pathological condition.

  相似文献   


7.
Mit mutations that disrupt function of the mitochondrial electron transport chain can, inexplicably, prolong Caenorhabditis elegans lifespan. In this study we use a metabolomics approach to identify an ensemble of mitochondrial‐derived α‐ketoacids and α‐hydroxyacids that are produced by long‐lived Mit mutants but not by other long‐lived mutants or by short‐lived mitochondrial mutants. We show that accumulation of these compounds is dependent on concerted inhibition of three α‐ketoacid dehydrogenases that share dihydrolipoamide dehydrogenase (DLD) as a common subunit, a protein previously linked in humans with increased risk of Alzheimer's disease. When the expression of DLD in wild‐type animals was reduced using RNA interference we observed an unprecedented effect on lifespan – as RNAi dosage was increased lifespan was significantly shortened, but, at higher doses, it was significantly lengthened, suggesting that DLD plays a unique role in modulating length of life. Our findings provide novel insight into the origin of the Mit phenotype.  相似文献   

8.
Mitochondrial metabolism is highly responsive to nutrient availability and ongoing activity in neuronal circuits. The molecular mechanisms by which brain cells respond to an increase in cellular energy expenditure are largely unknown. Mild mitochondrial uncoupling enhances cellular energy expenditure in mitochondria and can be induced with 2,4‐dinitrophenol (DNP), a proton ionophore previously used for weight loss. We found that DNP treatment reduces mitochondrial membrane potential, increases intracellular Ca2+ levels and reduces oxidative stress in cerebral cortical neurons. Gene expression profiling of the cerebral cortex of DNP‐treated mice revealed reprogramming of signaling cascades that included suppression of the mammalian target of rapamycin (mTOR) and insulin – PI3K – MAPK pathways, and up‐regulation of tuberous sclerosis complex 2, a negative regulator of mTOR. Genes encoding proteins involved in autophagy processes were up‐regulated in response to DNP. CREB (cAMP‐response element‐binding protein) signaling, Arc and brain‐derived neurotrophic factor, which play important roles in synaptic plasticity and adaptive cellular stress responses, were up‐regulated in response to DNP, and DNP‐treated mice exhibited improved performance in a test of learning and memory. Immunoblot analysis verified that key DNP‐induced changes in gene expression resulted in corresponding changes at the protein level. Our findings suggest that mild mitochondrial uncoupling triggers an integrated signaling response in brain cells characterized by reprogramming of mTOR and insulin signaling, and up‐regulation of pathways involved in adaptive stress responses, molecular waste disposal, and synaptic plasticity.

  相似文献   


9.
10.
11.
Several autophagy proteins contain an LC3‐interacting region (LIR) responsible for their interaction with Atg8 homolog proteins. Here, we show that ALFY binds selectively to LC3C and the GABARAPs through a LIR in its WD40 domain. Binding of ALFY to GABARAP is indispensable for its recruitment to LC3B‐positive structures and, thus, for the clearance of certain p62 structures by autophagy. In addition, the crystal structure of the GABARAP‐ALFY‐LIR peptide complex identifies three conserved residues in the GABARAPs that are responsible for binding to ALFY. Interestingly, introduction of these residues in LC3B is sufficient to enable its interaction with ALFY, indicating that residues outside the LIR‐binding hydrophobic pockets confer specificity to the interactions with Atg8 homolog proteins.  相似文献   

12.
13.
14.
15.
16.
Pheromone‐binding proteins (PBPs) are distributed widely on the antennae of insects, and they are believed to be involved in the process of chemical signal transduction, but their interaction with chemicals is largely unknown. Here, we present our findings on the key amino acid residues of PBPs in the gypsy moth, Lymantria dispar. Potential key residues were screened with the Calculate Mutation Energy program and molecular docking methods. Mutated proteins were obtained by mutating residues to alanine via site‐directed mutagenesis. Circular dichroism (CD) spectroscopy showed that the mutated proteins formed α‐helix, and the stability of protein structure was influenced due to mutations. Fluorescence binding assays were further conducted with the mutated proteins, sex pheromones and analogues. Results showed that to PBP 1, tyrosine at position 41 and phenylalanine at position 76 could be the key amino acid residues influencing the stability of structure; in addition, phenylalanine at 36 and lysine at position 94 could be key amino acid residues interacting with chemicals. To PBP 2, glycine at position 49, phenylalanine at position 76 and lysine at position 121 could be the key amino acid residues in the structural stability. These results shed light on the relationship between the specific amino acids and functions of PBPs in transmitting the chemical signals.  相似文献   

17.
The biological clock affects aging through ras‐1 (bd) and lag‐1, and these two longevity genes together affect a clock phenotype and the clock oscillator in Neurospora crassa. Using an automated cell‐counting technique for measuring conidial longevity, we show that the clock‐associated genes lag‐1 and ras‐1 (bd) are true chronological longevity genes. For example, wild type (WT) has an estimated median life span of 24 days, while the double mutant lag‐1, ras‐1 (bd) has an estimated median life span of 120 days for macroconidia. We establish the biochemical function of lag‐1 by complementing LAG1 and LAC1 in Saccharomyces cerevisiae with lag‐1 in N. crassa. Longevity genes can affect the clock as well in that, the double mutant lag‐1, ras‐1 (bd) can stop the circadian rhythm in asexual reproduction (i.e., banding in race tubes) and lengthen the period of the frequency oscillator to 41 h. In contrast to the ras‐1 (bd), lag‐1 effects on chronological longevity, we find that this double mutant undergoes replicative senescence (i.e., the loss of replication function with time), unlike WT or the single mutants, lag‐1 and ras‐1 (bd). These results support the hypothesis that sphingolipid metabolism links aging and the biological clock through a common stress response  相似文献   

18.
19.
  • Shikonin and its derivatives are important medicinal secondary metabolites accumulating in roots of Lithospermum erythrorhizon. Although some membrane proteins have been identified as transporters of secondary metabolites, the mechanisms underlying shikonin transport and accumulation in L. erythrorhizon cells still remain largely unknown.
  • In this study, we isolated a cDNA encoding LeMRP, an ATP‐binding cassette transporter from L. erythrorhizon, and further investigated its functions in the transport and biosynthesis of shikonin using the yeast transformation and transgenic hairy root methods, respectively. Real‐time PCR was applied for expression analyses of LeMRP and shikonin biosynthetic enzyme genes.
  • Functional analysis of LeMRP using the heterologous yeast cell expression system showed that LeMRP could be involved in shikonin transport. Transgenic hairy roots of L. erythrorhizon demonstrated that LeMRP overexpressing hairy roots produced more shikonin than the empty vector (EV) control. Real‐time PCR results revealed that the enhanced shikonin biosynthesis in the overexpression lines was mainly caused by highly up‐regulated expression of genes coding key enzymes (LePAL, HMGR, Le4CL and LePGT) involved in shikonin biosynthesis. Conversely, LeMRP RNAi decreased the accumulation of shikonin and effectively down‐regulated expression level of the above genes. Typical inhibitors of ABC proteins, such as azide and buthionine sulphoximine, dramatically inhibited accumulation of shikonin in hairy roots.
  • Our findings provide evidence for the important direct or indirect role of LeMRP in transmembrane transport and biosynthesis of shikonin.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号