首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cellular interactions mediated by the neural cell adhesion molecule (NCAM) are critical in cell migration, differentiation and plasticity. Switching of the NCAM‐interaction mode, from adhesion to signalling, is determined by NCAM carrying a particular post‐translational modification, polysialic acid (PSA). Regulation of cell‐surface PSA‐NCAM is traditionally viewed as a direct consequence of polysialyltransferase activity. Taking advantage of the polysialyltransferase Ca2+‐dependent activity, we demonstrate in TE671 cells that downregulation of PSA‐NCAM synthesis constitutes a necessary but not sufficient condition to reduce cell‐surface PSA‐NCAM; instead, PSA‐NCAM turnover required internalization of the molecule into the cytosol. PSA‐NCAM internalization was specifically triggered by collagen in the extracellular matrix (ECM) and prevented by insulin‐like growth factor (IGF1) and insulin. Our results pose a novel role for IGF1 and insulin in controlling cell migration through modulation of PSA‐NCAM turnover at the cell surface.

  相似文献   


2.
3.
The amyloid precursor protein (APP) is a type I transmembrane glycoprotein better known for its participation in the physiopathology of Alzheimer disease as the source of the beta amyloid fragment. However, the physiological functions of the full length protein and its proteolytic fragments have remained elusive. APP was first described as a cell‐surface receptor; nevertheless, increasing evidence highlighted APP as a cell adhesion molecule. In this review, we will focus on the current knowledge of the physiological role of APP as a cell adhesion molecule and its involvement in key events of neuronal development, such as migration, neurite outgrowth, growth cone pathfinding, and synaptogenesis. Finally, since APP is over‐expressed in Down syndrome individuals because of the extra copy of chromosome 21, in the last section of the review, we discuss the potential contribution of APP to the neuronal and synaptic defects described in this genetic condition.

  相似文献   


4.
Glutamate transport is a critical process in the brain that maintains low extracellular levels of glutamate to allow for efficient neurotransmission and prevent excitotoxicity. Loss of glutamate transport function is implicated in epilepsy, traumatic brain injury, and amyotrophic lateral sclerosis. It remains unclear whether or not glutamate transport can be modulated in these disease conditions to improve outcome. Here, we show that sirtuin (SIRT)4, a mitochondrial sirtuin, is up‐regulated in response to treatment with the potent excitotoxin kainic acid. Loss of SIRT4 leads to a more severe reaction to kainic acid and decreased glutamate transporter expression and function in the brain. Together, these results indicate a critical and novel stress response role for SIRT4 in promoting proper glutamate transport capacity and protecting against excitotoxicity.

  相似文献   


5.
6.
For over the last 50 years, the molecular mechanism of anti‐psychotic drugs' action has been far from clear. While risperidone is very often used in clinical practice, the most efficient known anti‐psychotic drug is clozapine (CLO). However, the biochemical background of CLO's action still remains elusive. In this study, we performed comparative proteomic analysis of rat cerebral cortex following chronic administration of these two drugs. We observed significant changes in the expression of cytoskeletal, synaptic, and regulatory proteins caused by both antipsychotics. Among other proteins, alterations in collapsin response mediator proteins, CRMP2 and CRMP4, were the most spectacular consequences of treatment with both drugs. Moreover, risperidone increased the level of proteins involved in cell proliferation such as fatty acid‐binding protein‐7 and translin‐associated factor X. CLO significantly up‐regulated the expression of visinin‐like protein 1, neurocalcin δ and mitochondrial, stomatin‐like protein 2, the calcium‐binding proteins regulating calcium homeostasis, and the functioning of ion channels and receptors.

  相似文献   


7.
Parkinson's disease (PD) is an age‐related, neurodegenerative motor disorder characterized by progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta and presence of α‐synuclein‐containing protein aggregates. Mutations in the mitochondrial Ser/Thr kinase PTEN‐induced kinase 1 (PINK1) are associated with an autosomal recessive familial form of early‐onset PD. Recent studies have suggested that PINK1 plays important neuroprotective roles against mitochondrial dysfunction by phosphorylating and recruiting Parkin, a cytosolic E3 ubiquitin ligase, to facilitate elimination of damaged mitochondria via autophagy‐lysosomal pathways. Loss of PINK1 in cells and animals leads to various mitochondrial impairments and oxidative stress, culminating in dopaminergic neuronal death in humans. Using a 2‐D polyacrylamide gel electrophoresis proteomics approach, the differences in expressed brain proteome and phosphoproteome between 6‐month‐old PINK1‐deficient mice and wild‐type mice were identified. The observed changes in the brain proteome and phosphoproteome of mice lacking PINK1 suggest that defects in signaling networks, energy metabolism, cellular proteostasis, and neuronal structure and plasticity are involved in the pathogenesis of familial PD.

  相似文献   


8.
Aggregate‐prone mutant proteins, such as α‐synuclein and huntingtin, play a prominent role in the pathogenesis of various neurodegenerative disorders; thus, it has been hypothesized that reducing the aggregate‐prone proteins may be a beneficial therapeutic strategy for these neurodegenerative disorders. Here, we identified two previously described glucosylceramide (GlcCer) synthase inhibitors, DL‐threo‐1‐Phenyl‐2‐palmitoylamino‐3‐morpholino‐1‐propanol and Genz‐123346(Genz), as enhancers of autophagy flux. We also demonstrate that GlcCer synthase inhibitors exert their effects on autophagy by inhibiting AKT‐mammalian target of rapamycin (mTOR) signaling. More importantly, siRNA knock down of GlcCer synthase had the similar effect as pharmacological inhibition, confirming the on‐target effect. In addition, we discovered that inhibition of GlcCer synthase increased the number and size of lysosomal/late endosomal structures. Although inhibition of GlcCer synthase decreases levels of mutant α‐synuclein in neurons, it does so, according to our data, through autophagy‐independent mechanisms. Our findings demonstrate a direct link between glycosphingolipid biosynthesis and autophagy in primary neurons, which may represent a novel pathway with potential therapeutic value for the treatment of Parkinson's disease.

  相似文献   


9.
Metabotropic glutamate receptor 5 (mGluR5) regulates excitatory post‐synaptic signaling in the central nervous system (CNS) and is implicated in various CNS disorders. Protein kinase A (PKA) signaling is known to play a critical role in neuropsychiatric disorders such as Parkinson's disease, schizophrenia, and addiction. Dopamine signaling is known to modulate the properties of mGluR5 in a cAMP‐ and PKA‐dependent manner, suggesting that mGluR5 may be a direct target for PKA. Our study identifies mGluR5 at Ser870 as a direct substrate for PKA phosphorylation and demonstrates that this phosphorylation plays a critical role in the PKA‐mediated modulation of mGluR5 functions such as extracellular signal‐regulated kinase phosphorylation and intracellular Ca2+ oscillations. The identification of the molecular mechanism by which PKA signaling modulates mGluR5‐mediated cellular responses contributes to the understanding of the interaction between dopaminergic and glutamatergic neuronal signaling.

  相似文献   


10.
The role of physical exercise as a neuroprotective agent against ischemic injury has been extensively discussed. Nevertheless, the mechanisms underlying the effects of physical exercise on cerebral ischemia remain poorly understood. Here, we investigate the hypothesis that physical exercise increases ischemic tolerance by decreasing the induction of cellular apoptosis and glutamate release. Rats (n = 50) were submitted to a swimming exercise protocol for 8 weeks. Hippocampal slices were then submitted to oxygen and glucose deprivation. Cellular viability, pro‐apoptotic markers (Caspase 8, Caspase 9, Caspase 3, and apoptosis‐inducing factor), and glutamate release were analyzed. The percentage of cell death, the amount of glutamate release, and the expression of the apoptotic markers were all decreased in the exercise group when compared to the sedentary group after oxygen and glucose deprivation. Our results suggest that physical exercise protects hippocampal slices from the effects of oxygen and glucose deprivation, probably by a mechanism involving both the decrease of glutamatergic excitotoxicity and apoptosis induction.

  相似文献   


11.
12.
Intermittent hypoxia (IH) during sleep, such as occurs in obstructive sleep apnea (OSA), leads to degenerative changes in the hippocampus, and is associated with spatial learning deficits in adult mice. In both patients and murine models of OSA, the disease is associated with suppression of growth hormone (GH) secretion, which is actively involved in the growth, development, and function of the central nervous system (CNS). Recent work showed that exogenous GH therapy attenuated neurocognitive deficits elicited by IH during sleep in rats. Here, we show that administration of the Growth Hormone Releasing Hormone (GHRH) agonist JI‐34 attenuates IH‐induced neurocognitive deficits, anxiety, and depression in mice along with reduction in oxidative stress markers such as MDA and 8‐hydroxydeoxyguanosine, and increases in hypoxia inducible factor‐1α DNA binding and up‐regulation of insulin growth factor‐1 and erythropoietin expression. In contrast, treatment with a GHRH antagonist (MIA‐602) during intermittent hypoxia did not affect any of the IH‐induced deleterious effects in mice. Thus, exogenous GHRH administered as the formulation of a GHRH agonist may provide a viable therapeutic intervention to protect IH‐vulnerable brain regions from OSA‐associated neurocognitive dysfunction.

  相似文献   


13.
Tuftsin (Thr‐Lys‐Pro‐Arg) is a natural immunomodulating peptide found to stimulate phagocytosis in macrophages/microglia. Tuftsin binds to the receptor neuropilin‐1 (Nrp1) on the surface of cells. Nrp1 is a single‐pass transmembrane protein, but its intracellular C‐terminal domain is too small to signal independently. Instead, it associates with a variety of coreceptors. Despite its long history, the pathway through which tuftsin signals has not been described. To investigate this question, we employed various inhibitors to Nrp1's coreceptors to determine which route is responsible for tuftsin signaling. We use the inhibitor EG00229, which prevents tuftsin binding to Nrp1 on the surface of microglia and reverses the anti‐inflammatory M2 shift induced by tuftsin. Furthermore, we demonstrate that blockade of transforming growth factor beta (TGFβ) signaling via TβR1 disrupts the M2 shift similar to EG00229. We report that tuftsin promotes Smad3 phosphorylation and reduces Akt phosphorylation. Taken together, our data show that tuftsin signals through Nrp1 and the canonical TGFβ signaling pathway.

  相似文献   


14.
15.
16.
Parkinson's disease (PD) and diabetes belong to the most common neurodegenerative and metabolic syndromes, respectively. Epidemiological links between these two frequent disorders are controversial. The neuropathological hallmarks of PD are protein aggregates composed of amyloid‐like fibrillar and serine‐129 phosphorylated (pS129) α‐synuclein (AS). To study if diet‐induced obesity could be an environmental risk factor for PD‐related α‐synucleinopathy, transgenic (TG) mice, expressing the human mutant A30P AS in brain neurons, were subjected after weaning to a lifelong high fat diet (HFD). The TG mice became obese and glucose‐intolerant, as did the wild‐type controls. Upon aging, HFD significantly accelerated the onset of the lethal locomotor phenotype. Coinciding with the premature movement phenotype and death, HFD accelerated the age of onset of brainstem α‐synucleinopathy as detected by immunostaining with antibodies against pathology‐associated pS129. Amyloid‐like neuropathology was confirmed by thioflavin S staining. Accelerated onset of neurodegeneration was indicated by Gallyas silver‐positive neuronal dystrophy as well as astrogliosis. Phosphorylation of the activation sites of the pro‐survival signaling intermediate Akt was reduced in younger TG mice after HFD. Thus, diet‐induced obesity may be an environmental risk factor for the development of α‐synucleinopathies. The molecular and cellular mechanisms remain to be further elucidated.

  相似文献   


17.
Thrombolysis with tissue plasminogen activator (tPA) increases matrix metalloproteinase‐9 (MMP‐9) activity in the ischemic brain, which exacerbates blood‐brain barrier injury and increases the risk of symptomatic cerebral hemorrhage. The mechanism through which tPA enhances MMP‐9 activity is not well understood. Here we report an important role of caveolin‐1 in mediating tPA‐induced MMP‐9 synthesis. Brain microvascular endothelial cell line bEnd3 cells were incubated with 5 or 20 μg/ml tPA for 24 hrs before analyzing MMP‐9 levels in the conditioned media and cellular extracts by gelatin zymography. tPA at a dose of 20 μg/mL tPA, but not 5 μg/mL, significantly increased MMP‐9 level in cultured media while decreasing it in cellular extracts. Concurrently, tPA treatment induced a 2.3‐fold increase of caveolin‐1 protein levels in endothelial cells. Interestingly, knockdown of Cav‐1 with siRNA inhibited tPA‐induced MMP‐9 mRNA up‐regulation and MMP‐9 increase in the conditioned media, but did not affect MMP‐9 decrease in cellular extracts. These results suggest that caveolin‐1 critically contributes to tPA‐mediated MMP‐9 up‐regulation, but may not facilitate MMP‐9 secretion in endothelial cells.

  相似文献   


18.
Soluble N‐ethylmaleimide sensitive factor attachment protein receptors (SNAREs) are crucial for exocytosis, trafficking, and neurite outgrowth, where vesicular SNAREs are directed toward their partner target SNAREs: synaptosomal‐associated protein of 25 kDa and syntaxin. SNARE proteins are normally membrane bound, but can be cleaved and released by botulinum neurotoxins. We found that botulinum proteases types C and D can easily be transduced into endocrine cells using DNA‐transfection reagents. Following administration of the C and D proteases into normally refractory Neuro2A neuroblastoma cells, the SNARE proteins were cleaved with high efficiency within hours. Remarkably, botulinum protease exposures led to cytotoxicity evidenced by spectrophotometric assays and propidium iodide penetration into the nuclei. Direct delivery of SNARE fragments into the neuroblastoma cells reduced viability similar to botulinum proteases' application. We observed synergistic cytotoxic effects of the botulinum proteases, which may be explained by the release and interaction of soluble SNARE fragments. We show for the first time that previously observed cytotoxicity of botulinum neurotoxins/C in neurons could be achieved in cells of neuroendocrine origin with implications for medical uses of botulinum preparations.

  相似文献   


19.
Previous studies have shown that fastigial nucleus stimulation (FNS) reduces tissue damage resulting from focal cerebral ischemia. Although the mechanisms of neuroprotection induced by FNS are not entirely understood, important data have been presented in the past two decades. MicroRNAs (miRNAs) are a newly discovered group of non‐coding small RNA molecules that negatively regulate target gene expression and are involved in the regulation of cell proliferation and cell apoptosis. To date, no studies have demonstrated whether miRNAs can serve as mediators of the brain's response to FNS, which leads to endogenous neuroprotection. Therefore, this study investigated the profiles of FNS‐mediated miRNAs. Using a combination of deep sequencing and microarray with computational analysis, we identified a novel miRNA in the rat ischemic cortex after 1 h of FNS. This novel miRNA (PC‐3p‐3469_406), herein referred to as rno‐miR‐676‐1, was upregulated in rats with cerebral ischemia after FNS. In vivo observations indicate that this novel miRNA may have antiapoptotic effects and contribute to neuroprotection induced by FNS. Our study provides a better understanding of neuroprotection induced by FNS.

  相似文献   


20.
Acyl‐CoA‐binding protein (ACBP) is a ubiquitously expressed protein that binds intracellular acyl‐CoA esters. Several studies have suggested that ACBP acts as an acyl‐CoA pool former and regulates long‐chain fatty acids (LCFA) metabolism in peripheral tissues. In the brain, ACBP is known as Diazepam‐Binding Inhibitor, a secreted peptide acting as an allosteric modulator of the GABAA receptor. However, its role in central LCFA metabolism remains unknown. In the present study, we investigated ACBP cellular expression, ACBP regulation of LCFA intracellular metabolism, FA profile, and FA metabolism‐related gene expression using ACBP‐deficient and control mice. ACBP was mainly found in astrocytes with high expression levels in the mediobasal hypothalamus. We demonstrate that ACBP deficiency alters the central LCFA‐CoA profile and impairs unsaturated (oleate, linolenate) but not saturated (palmitate, stearate) LCFA metabolic fluxes in hypothalamic slices and astrocyte cultures. In addition, lack of ACBP differently affects the expression of genes involved in FA metabolism in cortical versus hypothalamic astrocytes. Finally, ACBP deficiency increases FA content and impairs their release in response to palmitate in hypothalamic astrocytes. Collectively, these findings reveal for the first time that central ACBP acts as a regulator of LCFA intracellular metabolism in astrocytes.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号