首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Sexual behavior in male rats is rewarding and reinforcing. However, little is known about the specific cellular and molecular mechanisms mediating sexual reward or the reinforcing effects of reward on subsequent expression of sexual behavior. This study tests the hypothesis that ΔFosB, the stably expressed truncated form of FosB, plays a critical role in the reinforcement of sexual behavior and experience‐induced facilitation of sexual motivation and performance. Sexual experience was shown to cause ΔFosB accumulation in several limbic brain regions including the nucleus accumbens (NAc), medial prefrontal cortex, ventral tegmental area and caudate putamen but not the medial preoptic nucleus. Next, the induction of c‐Fos, a downstream (repressed) target of ΔFosB, was measured in sexually experienced and naïve animals. The number of mating‐induced c‐Fos‐immunoreactive cells was significantly decreased in sexually experienced animals compared with sexually naïve controls. Finally, ΔFosB levels and its activity in the NAc were manipulated using viral‐mediated gene transfer to study its potential role in mediating sexual experience and experience‐induced facilitation of sexual performance. Animals with ΔFosB overexpression displayed enhanced facilitation of sexual performance with sexual experience relative to controls. In contrast, the expression of ΔJunD, a dominant negative binding partner of ΔFosB, attenuated sexual experience‐induced facilitation of sexual performance and stunted long‐term maintenance of facilitation compared to green fluorescence protein and ΔFosB overexpressing groups. Together, these findings support a critical role for ΔFosB expression in the NAc for the reinforcing effects of sexual behavior and sexual experience‐induced facilitation of sexual performance.  相似文献   

2.
Recent studies reveal that cocaine experience results in persistent neuroadaptive changes within glutamate (Glu) synapses in brain areas associated with drug reward. However, it remains unclear whether cocaine affects Glu release in drug‐naive animals and how it is altered by drug experience. Using high‐speed amperometry with enzyme‐based and enzyme‐free biosensors in freely moving rats, we show that an initial intravenous cocaine injection at a low self‐administering dose (1 mg/kg) induces rapid, small and transient Glu release in the nucleus accumbens shell (NAc), which with subsequent injections rapidly becomes a much stronger, two‐component increase. Using cocaine‐methiodide, cocaine's analog that does not cross the blood–brain barrier, we confirm that the initial cocaine‐induced Glu release in the NAc has a peripheral neural origin. Unlike cocaine, Glu responses induced by cocaine‐methiodide rapidly habituate following repeated exposure. However, after cocaine experience this drug induces cocaine‐like Glu responses. Hence, the interoceptive actions of cocaine, which essentially precede its direct actions in the brain, play a critical role in experience‐dependent alterations in Glu release, cocaine‐induced neural sensitization and may contribute to cocaine addiction.

  相似文献   


3.
Although the involvement of both endogenous opioid and serotonergic systems in modulation of pain and emotion was suggested, the neurochemical interaction between these systems in the brain has not previously been studied directly. Herein, the effects of the local application of serotonin (5-HT) and fluoxetine (a 5-HT reuptake inhibitor) on extracellular levels of beta-endorphin in the arcuate nucleus and nucleus accumbens were assessed in freely moving rats using in vivo microdialysis. The mean basal concentrations of beta-endorphin in dialysates obtained from the arcuate nucleus and nucleus accumbens were 259.9 and 143.3 pM, respectively. Specific lesion of the serotonergic system by 5,7-dihydroxytryptamine (5,7-DHT) caused a significant decrease in these dialysate beta-endorphin levels. When 5-HT (0.25-5 microM) was added to the perfusion solution, the levels of beta-endorphin in the dialysate from the arcuate nucleus increased (186-296% of baseline), in a concentration-dependent manner. In the nucleus accumbens, 0.5 and 2 microM 5-HT in the perfusion fluid did not affect the levels of beta-endorphin in the dialysate, whereas 5 and 10 microM 5-HT caused an increase of approximately 190% of baseline. When fluoxetine (250 microM) was present in the perfusing solution, the levels of beta-endorphin in the dialysates from the arcuate nucleus and nucleus accumbens increased two- to threefold. This effect was not obtained in the 5,7-DHT-lesioned rats. Thus, 5-HT, either endogenously or exogenously delivered, appears to facilitate the release of beta-endorphin in the arcuate nucleus and nucleus accumbens. This indication of an interaction between serotonergic and endorphinic systems may be relevant for assessing pain and mood disorder circuits and the mode of action of antidepressant drugs.  相似文献   

4.
5.
Del Arco A  Segovia G  Mora F 《Amino acids》2000,19(3-4):729-738
Summary. Using microdialysis, the effects of endogenous glutamate on extracellular concentrations of taurine in striatum and nucleus accumbens of the awake rat were investigated. The glutamate uptake inhibitor L-trans-pyrrolidine-2,4-dicarboxylic acid (PDC) was used to increase the extracellular concentration of glutamate. PDC (1, 2 and 4 mM) produced a dose-related increase of extracellular concentrations of glutamate and taurine in striatum and nucleus accumbens. Increases of extracellular taurine were significantly correlated with increases of extracellular glutamate, but not with PDC doses, which suggests that endogenous glutamate produced the observed increases of extracellular taurine in striatum and nucleus accumbens. The role of ionotropic glutamate receptors on the increases of taurine was also studied. In striatum, perfusion of the antagonists of NMDA and AMPA/kainate glutamate receptors attenuated the increases of extracellular taurine. AMPA/kainate, but not NMDA receptors, also reduced the increases of extracellular taurine in nucleus accumbens. These results suggest that glutamate-taurine interactions exist in striatum and nucleus accumbens of the awake rat. Received March 5, 1999/Accepted September 22, 1999  相似文献   

6.
Glutamate is involved in cerebral ischemic injury, but its role has not been completely clarified and studies are required to understand how to minimize its detrimental effects, contemporarily boosting the positive ones. In fact, glutamate is not only a neurotransmitter, but primarily a key metabolite for brain bioenergetics. Thus, we investigated the relationships between glutamate and brain energy metabolism in an in vivo model of complete cerebral ischemia of 15 min and during post‐ischemic recovery after 1, 24, 48, 72, and 96 h in 1‐year‐old adult and 2‐year‐old aged rats. The maximum rates (V max) of glutamate dehydrogenase (GlDH ), glutamate‐oxaloacetate transaminase, and glutamate‐pyruvate transaminase were assayed in somatic mitochondria (FM ) and in intra‐synaptic ‘Light’ mitochondria and intra‐synaptic ‘Heavy’ mitochondria ones purified from cerebral cortex, distinguishing post‐ and pre‐synaptic compartments. During ischemia, none of the enzymes were modified in adult animals. In aged ones, glutamate‐oxaloacetate transaminase was increased in FM and GlDH in intra‐synaptic ‘Heavy’ mitochondria, stimulating glutamate catabolism. During post‐ischemic recovery, FM did not show modifications at both ages while, in intra‐synaptic mitochondria of adult animals, glutamate catabolism was increased after 1 h of recirculation and decreased after 48 and 72 h, whereas it remained decreased up to 96 h in aged rats. These results, with those previously published about Krebs’ cycle and Electron Transport Chain (Villa et al ., [2013] Neurochem. Int . 63, 765–781), demonstrate that: (i) V max of energy‐linked enzymes are different in the various cerebral mitochondria, which (ii) respond differently to ischemia and post‐ischemic recovery, also (iii) with respect to aging.

  相似文献   

7.
The occurrence of pyruvate recycling in the rat brain was studied in either pentobarbital anesthetized animals or awake animals receiving a light analgesic dose of morphine, which were infused with either [1-13C]glucose + acetate or glucose + [2-13C]acetate for various periods of time. Metabolite enrichments in the brain, blood and the liver were determined from NMR analyses of tissue extracts. They indicated that: (i) Pyruvate recycling was revealed in the brain of both the anesthetized and awake animals, as well as from lactate and alanine enrichments as from glutamate isotopomer composition, but only after infusion of glucose + [2-13C]acetate. (ii) Brain glucose was labelled from [2-13C]acetate at the same level in anaesthetized and awake rats (approximately 4%). Comparing its enrichment with that of blood and liver glucose indicated that brain glucose labelling resulted from hepatic gluconeogenesis. (iii) Analysing glucose 13C-13C coupling in the brain, blood and the liver confirmed that brain glucose could be labelled in the liver through the activities of both pyruvate recycling and gluconeogenesis. (iv) The rate of appearance and the amount of brain glutamate C4-C5 coupling, a marker of pyruvate recycling when starting from [2-13C]acetate, were lower than those of brain glucose labelling from hepatic metabolism. (v) The evaluation of the contributions of glucose and acetate to glutamate metabolism revealed that more than 60% of brain glutamate was synthesized from glucose whereas only 7% was from acetate and that glutamate C4-C5 coupling was mainly due to the metabolism of glucose labelled through hepatic gluconeogenesis. All these results indicate that, under the present conditions, the pyruvate recycling observed through the labelling of brain metabolites mainly originates from peripheral metabolism.  相似文献   

8.
Aging is a major risk factor for many chronic diseases due to increased vulnerability to external stress and susceptibility to disease. Aging is associated with metabolic liver disease such as nonalcoholic fatty liver. In this study, we investigated changes in lipid metabolism during aging in mice and the mechanisms involved. Lipid accumulation was increased in liver tissues of aged mice, particularly cholesterol. Increased uptake of both cholesterol and glucose was observed in hepatocytes of aged mice as compared with younger mice. The mRNA expression of GLUT2, GK, SREBP2, HMGCR, and HMGCS, genes for cholesterol synthesis, was gradually increased in liver tissues during aging. Reactive oxygen species (ROS) increase with aging and are closely related to various aging‐related diseases. When we treated HepG2 cells and primary hepatocytes with the ROS inducer, H2O2, lipid accumulation increased significantly compared to the case for untreated HepG2 cells. H2O2 treatment significantly increased glucose uptake and acetyl‐CoA production, which results in glycolysis and lipid synthesis. Treatment with H2O2 significantly increased the expression of mRNA for genes related to cholesterol synthesis and uptake. These results suggest that ROS play an important role in altering cholesterol metabolism and consequently contribute to the accumulation of cholesterol in the liver during the aging process.  相似文献   

9.
10.
11.
12.
Precise quantification of extracellular glutamate concentrations upon neuronal activation is crucial for the understanding of brain function and neurological disorders. While optogenetics is an outstanding method for the correlation between distinct neurons and their role in circuitry and behavior, the electrochemically inactive nature of glutamate has proven challenging for recording upon optogenetic stimulations. This difficulty is due to the necessity for using enzyme‐coated microelectrodes and the risk for light‐induced artifacts. In this study, we establish a method for the combination of in vivo optogenetic stimulation with selective measurement of glutamate concentrations using enzyme‐coated multielectrode arrays and amperometry. The glutamatergic subthalamic nucleus (STN ), which is the main electrode target site in deep brain stimulation treatment of advanced Parkinson′s disease, has recently proven opotogenetically targetable in Pitx2‐Cre‐transgenic mice and was here used as model system. Upon stereotactic injection of viral Channelrhodopsin2‐eYFP constructs into the STN , amperometric recordings were performed at a range of optogenetic stimulation frequencies in the globus pallidus, the main STN target area, in anesthetized mice. Accurate quantification was enabled through a multi‐step analysis approach based on self‐referencing microelectrodes and repetition of the experimental protocol at two holding potentials, which allowed for the identification, isolation and removal of photoelectric and photoelectrochemical artifacts. This study advances the field of in vivo glutamate detection with combined optogenetics and amperometric recordings by providing a validated analysis framework for application in a wide variety of glutamate‐based approaches in neuroscience.

  相似文献   

13.
Taste receptors (TASRs) and appetite and reward (AR) mechanisms influence eating behaviour, which in turn affects food intake and risk of obesity. In a previous study, we used next generation sequencing to identify potentially functional mutations in TASR and AR genes and found indications for genetic associations between identified variants and growth and fat deposition in a subgroup of animals (= 38) from the UNIK resource pig population. This population was created for studying obesity and obesity‐related diseases. In the present study we validated results from our previous study by investigating genetic associations between 24 selected single nucleotide variants in TASR and AR gene variants and 35 phenotypes describing obesity and metabolism in the entire UNIK population (= 564). Fifteen variants showed significant association with specific obesity‐related phenotypes after Bonferroni correction. Six of the 15 genes, namely SIM1, FOS, TAS2R4, TAS2R9, MCHR2 and LEPR, showed good correlation between known biological function and associated phenotype. We verified a genetic association between potentially functional variants in TASR/AR genes and growth/obesity and conclude that the combination of identification of potentially functional variants by next generation sequencing followed by targeted genotyping and association studies is a powerful and cost‐effective approach for increasing the power of genetic association studies.  相似文献   

14.
Volitional animal resistance training constitutes an important approach to modeling human resistance training. However, the lack of standardization protocol poses a frequent impediment to the production of skeletal muscle hypertrophy and the study of related physiological variables (i.e., cellular damage/inflammation or metabolic stress). Therefore, the purposes of the present study were: (1) to test whether a long‐term and low frequency experimental resistance training program is capable of producing absolute increases in muscle mass; (2) to examine whether cellular damage/inflammation or metabolic stress is involved in the process of hypertrophy. In order to test this hypothesis, animals were assigned to a sedentary control (C, n = 8) or a resistance trained group (RT, n = 7). Trained rats performed 2 exercise sessions per week (16 repetitions per day) during 12 weeks. Our results demonstrated that the resistance training strategy employed was capable of producing absolute mass gain in both soleus and plantaris muscles (12%, p < 0.05). Furthermore, muscle tumor necrosis factor (TNF‐α) protein expression (soleus muscle) was reduced by 24% (p < 0.01) in trained group when compared to sedentary one. Finally, serum creatine kinase (CK) activity and serum lactate concentrations were not affected in either group. Such information may have practical applications if reproduced in situations where skeletal muscle hypertrophy is desired but high mechanical stimuli of skeletal muscle and inflammation are not. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Age‐dependent cognitive and behavioral deterioration may arise from defects in different components of the nervous system, including those of neurons, synapses, glial cells, or a combination of them. We find that AFD, the primary thermosensory neuron of Caenorhabditis elegans, in aged animals is characterized by loss of sensory ending integrity, including reduced actin‐based microvilli abundance and aggregation of thermosensory guanylyl cyclases. At the functional level, AFD neurons in aged animals are hypersensitive to high temperatures and show sustained sensory‐evoked calcium dynamics, resulting in a prolonged operating range. At the behavioral level, senescent animals display cryophilic behaviors that remain plastic to acute temperature changes. Excessive cyclase activity of the AFD‐specific guanylyl cyclase, GCY‐8, is associated with developmental defects in AFD sensory ending and cryophilic behavior. Surprisingly, loss of the GCY‐8 cyclase domain reduces these age‐dependent morphological and behavioral changes, while a prolonged AFD operating range still exists in gcy‐8 animals. The lack of apparent correlation between age‐dependent changes in the morphology or stimuli‐evoked response properties of primary sensory neurons and those in related behaviors highlights the importance of quantitative analyses of aging features when interpreting age‐related changes at structural and functional levels. Our work identifies aging hallmarks in AFD receptive ending, temperature‐evoked AFD responses, and experience‐based thermotaxis behavior, which serve as a foundation to further elucidate the neural basis of cognitive aging.  相似文献   

16.
Fabry disease is an X-linked lysosomal disorder characterized by deficient alpha-galactosidase A activity and intracellular accumulations of glycosphingolipids, mainly globotriaosylceramide (Gb3). Clinically, patients occasionally present CNS dysfunction. To examine the pathophysiology underlying brain dysfunction, we examined glucose utilization (CMR(glc)) and cerebral blood flow (CBF) globally and locally in 18 brain structures in the alpha-galactosidase A gene knockout mouse. Global CMR(glc) was statistically significantly reduced by 22% in Fabry mice (p < 0.01). All 18 structures showed decreases in local CMR(glc) ranging from 14% to 33%. The decreases in all structures of the diencephalon, caudate-putamen, brain stem, and cerebellar cortex were statistically significant (p < 0.05). Global cerebral blood flow (CBF) and local CBF measured in the same 18 structures were lower in Fabry mice than in control mice, but none statistically significantly. Histological examination of brain revealed no cerebral infarcts but abundant Gb3 deposits in the walls of the cerebral vessels with neuronal deposits localized to the medulla oblongata. These results indicate an impairment in cerebral energy metabolism in the Fabry mice, but one not necessarily due to circulatory insufficiency.  相似文献   

17.
18.
A growing body of knowledge is available on the cellular regulation of overflow metabolism in mammalian hosts of recombinant protein production. However, to develop strategies to control the regulation of overflow metabolism in cell culture processes, the effect of process parameters on metabolism has to be well understood. In this study, we investigated the effect of pH and temperature shift timing on lactate metabolism in a fed‐batch Chinese hamster ovary (CHO) process by using a Design of Experiments (DoE) approach. The metabolic switch to lactate consumption was controlled in a broad range by the proper timing of pH and temperature shifts. To extract process knowledge from the large experimental dataset, we proposed a novel methodological concept and demonstrated its usefulness with the analysis of lactate metabolism. Time‐resolved metabolic flux analysis and PLS‐R VIP were combined to assess the correlation of lactate metabolism and the activity of the major intracellular pathways. Whereas the switch to lactate uptake was mainly triggered by the decrease in the glycolytic flux, lactate uptake was correlated to TCA activity in the last days of the cultivation. These metabolic interactions were visualized on simple mechanistic plots to facilitate the interpretation of the results. Taken together, the combination of knowledge‐based mechanistic modeling and data‐driven multivariate analysis delivered valuable insights into the metabolic control of lactate production and has proven to be a powerful tool for the analysis of large metabolic datasets. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1657–1668, 2015  相似文献   

19.
20.
Social insects exhibit complex learning and memory mechanisms while foraging. Vespula germanica (Fab.) (Hymenoptera: Vespidae) is an invasive social wasp that frequently forages on undepleted food sources, making several flights between the resource and the nest. Previous studies have shown that during this relocating behavior, wasps learn to associate food with a certain site, and can recall this association 1 h later. In this work, we evaluated whether this wasp species is capable of retrieving an established association after 24 h. For this purpose, we trained free flying individuals to collect proteinaceous food from an experimental plate (feeder) located in an experimental array. A total of 150 individuals were allowed 2, 4, or 8 visits. After the training phase, the array was removed and set up again 24 h later, but this time a second baited plate was placed opposite to the first. After 24 h we recorded the rate of wasps that returned to the experimental area and those which collected food from the previously learned feeding station or the nonlearned one. During the testing phase, we observed that a low rate of wasps trained with 2 collecting visits returned to the experimental area (22%), whereas the rate of returning wasps trained with 4 or 8 collecting visits was higher (51% and 41%, respectively). Moreover, wasps trained with 8 feeding visits collected food from the previously learned feeding station at a higher rate than those that did from the nonlearned one. In contrast, wasps trained 2 or 4 times chose both feeding stations at a similar rate. Thus, significantly more wasps returned to the previously learned feeding station after 8 repeated foraging flights but not after only 2 or 4 visits. This is the first report that demonstrates the existence of long‐term spatial memory in V. germanica wasps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号