首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Accumulating evidence indicates that abnormal deposition of amyloid‐β (Aβ) peptide in the brain is responsible for endothelial cell damage and consequently leads to blood–brain barrier (BBB) leakage. However, the mechanisms underlying BBB disruption are not well described. We employed an monolayer BBB model comprising bEnd.3 cell and found that BBB leakage was induced by treatment with Aβ1–42, and the levels of tight junction (TJ) scaffold proteins (ZO‐1, Claudin‐5, and Occludin) were decreased. Through comparisons of the effects of the different components of Aβ1–42, including monomer (Aβ1–42‐Mono), oligomer (Aβ1–42‐Oligo), and fibril (Aβ1–42‐Fibril), our data confirmed that Aβ1–42‐Oligo is likely to be the most important damage factor that results in TJ damage and BBB leakage in Alzheimer's disease. We found that the incubation of bEnd.3 cells with Aβ1–42 significantly up‐regulated the level of receptor for advanced glycation end‐products (RAGE). Co‐incubation of a polyclonal antibody to RAGE and Aβ1–42‐Oligo in bEnd.3 cells blocked RAGE suppression of Aβ1–42‐Oligo‐induced alterations in TJ scaffold proteins and reversed Aβ1–42‐Oligo‐induced up‐regulation of RAGE, matrix metalloproteinase (MMP)‐2, and MMP‐9. Furthermore, we found that these effects induced by Aβ1–42‐Oligo treatment were effectively suppressed by knockdown of RAGE using small interfering RNA (siRNA) transfection. We also found that GM 6001, a broad‐spectrum MMP inhibitor, partially reversed the Aβ1–42‐Oligo‐induced inhibitor effects in bEnd.3 cells. Thus, these results suggested that RAGE played an important role in Aβ‐induced BBB leakage and alterations of TJ scaffold proteins, through a mechanism that involved up‐regulation of MMP‐2 and MMP‐9.

  相似文献   


2.
The 19‐transmembrane, multisubunit γ‐secretase complex generates the amyloid β‐peptide (Aβ) of Alzheimer's disease (AD) by an unusual intramembrane proteolysis of the β‐amyloid precursor protein. The complex, which similarly processes many other type 1 transmembrane substrates, is composed of presenilin, Aph1, nicastrin, and presenilin enhancer (Pen‐2), all of which are necessary for proper complex maturation and enzymatic activity. Obtaining a high‐resolution atomic structure of the intact complex would greatly aid the rational design of compounds to modulate activity but is a very difficult task. A complementary method is to generate structures for each individual subunit to allow one to build a model of the entire complex. Here, we describe a method by which recombinant human Pen‐2 can be purified from bacteria to > 95% purity at milligram quantities per liter, utilizing a maltose binding protein tag to both increase solubility and facilitate purification. Expressing the same construct in mammalian cells, we show that the large N‐terminal maltose binding protein tag on Pen‐2 still permits incorporation into the complex and subsequent presenilin‐1 endoproteolysis, nicastrin glycosylation and proteolytic activity. These new methods provide valuable tools to study the structure and function of Pen‐2 and the γ‐secretase complex.

  相似文献   


3.
The β‐amyloid peptides (Aβ), Aβ1–40 and Aβ1–42, have been implicated in Alzheimer's disease (AD) pathology. Although Aβ1–42 is generally considered to be the pathological peptide in AD, both Aβ1–40 and Aβ1–42 have been used in a variety of experimental models without discrimination. Here we show that monomeric or oligomeric forms of the two Aβ peptides, when interact with the neuronal cation channel, α7 nicotinic acetylcholine receptors (α7nAChR), would result in distinct physiologic responses as measured by acetylcholine release and calcium influx experiments. While Aβ1–42 effectively attenuated these α7nAChR‐dependent physiology to an extent that was apparently irreversible, Aβ1–40 showed a lower inhibitory activity that could be restored upon washings with physiologic buffers or treatment with α7nAChR antagonists. Our data suggest a clear pharmacological distinction between Aβ1–40 and Aβ1–42. © 2003 Wiley Periodicals, Inc. J Neurobiol 55: 25–30, 2003  相似文献   

4.
We have recently reported that a ~19‐kDa polypeptide, rPK‐4, is a protein kinase Cs inhibitor that is 89% homologous to the 1171–1323 amino acid region of the 228‐kDa human pericentriolar material‐1 (PCM‐1) protein (Chakravarthy et al. 2012). We have now discovered that rPK‐4 binds oligomeric amyloid‐β peptide (Aβ)1‐42 with high affinity. Most importantly, a PCM‐1‐selective antibody co‐precipitated Aβ and amyloid β precursor protein (AβPP) from cerebral cortices and hippocampi from AD (Alzheimer's disease) transgenic mice that produce human AβPP and Aβ1‐42, suggesting that PCM‐1 may interact with amyloid precursor protein/Aβ in vivo. We have identified rPK‐4′s Aβ‐binding domain using a set of overlapping synthetic peptides. We have found with ELISA, dot‐blot, and polyacrylamide gel electrophoresis techniques that a ~ 5 kDa synthetic peptide, amyloid binding peptide (ABP)‐p4‐5 binds Aβ1‐42 at nM levels. Most importantly, ABP‐p4‐5, like rPK‐4, appears to preferentially bind Aβ1‐42 oligomers, believed to be the toxic AD‐drivers. As expected from these observations, ABP‐p4‐5 prevented Aβ1‐42 from killing human SH‐SY5Y neuroblastoma cells via apoptosis. These findings indicate that ABP‐p4‐5 is a possible candidate therapeutic for AD.  相似文献   

5.
Astrogliosis is a hallmark of Alzheimer′s disease (AD) and may constitute a primary pathogenic component of that disorder. Elucidation of signaling cascades inducing astrogliosis should help characterizing the function of astrocytes and identifying novel molecular targets to modulate AD progression. Here, we describe a novel mechanism by which soluble amyloid‐β modulates β1‐integrin activity and triggers NADPH oxidase (NOX)‐dependent astrogliosis in vitro and in vivo. Amyloid‐β oligomers activate a PI3K/classical PKC/Rac1/NOX pathway which is initiated by β1‐integrin in cultured astrocytes. This mechanism promotes β1‐integrin maturation, upregulation of NOX2 and of the glial fibrillary acidic protein (GFAP) in astrocytes in vitro and in hippocampal astrocytes in vivo. Notably, immunochemical analysis of the hippocampi of a triple‐transgenic AD mouse model shows increased levels of GFAP, NOX2, and β1‐integrin in reactive astrocytes which correlates with the amyloid β‐oligomer load. Finally, analysis of these proteins in postmortem frontal cortex from different stages of AD (II to V/VI) and matched controls confirmed elevated expression of NOX2 and β1‐integrin in that cortical region and specifically in reactive astrocytes, which was most prominent at advanced AD stages. Importantly, protein levels of NOX2 and β1‐integrin were significantly associated with increased amyloid‐β load in human samples. These data strongly suggest that astrogliosis in AD is caused by direct interaction of amyloid β oligomers with β1‐integrin which in turn leads to enhancing β1‐integrin and NOX2 activity via NOX‐dependent mechanisms. These observations may be relevant to AD pathophysiology.  相似文献   

6.
Dysregulated metabolism and consequent extracellular accumulation of amyloid‐β (Aβ) peptides in the brain underlie the pathogenesis of Alzheimer's disease. Extracellular Aβ in the brain parenchyma is mainly secreted from the pre‐synaptic terminals of neuronal cells in a synaptic activity‐dependent manner. The p24 family member p24α2 reportedly attenuates Aβ generation by inhibiting γ‐secretase processing of amyloid precursor protein; however, the pattern of expression and localization of p24α2 in the brain remains unknown. We performed immunohistochemical staining and subcellular fractionation for p24α2 in the mouse brain. Immunostaining showed that p24α2 is broadly distributed in the gray matter of the central nervous system and is predominantly localized to synapses. Subcellular fractionation revealed prominent localization of p24α2 in the pre‐synaptic terminals. Immunoisolation of synaptic vesicles (SV) indicated that p24α2 is condensed at active zone‐docked SV. During development, p24α2 expression is highest in the post‐natal period and gradually decreases with age. We also confirmed that amyloid precursor protein and γ‐secretase components are localized at active zone‐docked SV. Our results suggest a novel functional role for p24α2 in the regulation of synaptic transmission and synaptogenesis, and provide evidence for the participation of p24α2 in the regulation of Aβ generation and secretion in the brain.

  相似文献   


7.
Amyloid‐β peptide (Aβ) generation initiated by β‐site amyloid precursor protein cleaving enzyme 1 BACE1 is a critical cause of Alzheimer's disease. In the course of our ongoing investigation of natural anti‐dementia resources, the ethyl acetate (EtOAc) fraction exerted strong BACE1‐specific inhibition with the half maximal inhibitory concentration (IC50) value of 9.2 × 10?5 μg/mL. Furthermore, Aβ(25–35)‐induced cell death was predominantly prevented by the EtOAc fraction of Allomyrina dichotoma larvae through diminishing of cellular oxidative stress and attenuating apoptosis by inhibiting caspase‐3 activity. Taken together, the present study demonstrated that A. dichotoma larvae possess novel neuroprotective properties not only via the selective and specific inhibition of BACE1 activity but also through the alleviation of Aβ(25–35)‐induced toxicity, which may raise the possibility of therapeutic application of A. dichotoma larvae for preventing and/or treating dementia.  相似文献   

8.
Alzheimer's disease is a progressive neurodegenerative disease characterized by extracellular deposits of β‐amyloid (Aβ) plaques. Aggregation of the Aβ42 peptide leading to plaque formation is believed to play a central role in Alzheimer's disease pathogenesis. Anti‐Aβ monoclonal antibodies can reduce amyloid plaques and could possibly be used for immunotherapy. We have developed a monoclonal antibody C706, which recognizes the human Aβ peptide. Here we report the crystal structure of the antibody Fab fragment at 1.7 Å resolution. The structure was determined in two crystal forms, P21 and C2. Although the Fab was crystallized in the presence of Aβ16, no peptide was observed in the crystals. The antigen‐binding site is blocked by the hexahistidine tag of another Fab molecule in both crystal forms. The poly‐His peptide in an extended conformation occupies a crevice between the light and heavy chains of the variable domain. Two consecutive histidines (His4–His5) stack against tryptophan residues in the central pocket of the antigen‐binding surface. In addition, they form hydrogen bonds to the acidic residues at the bottom of the pocket. The mode of his‐tag binding by C706 resembles the Aβ recognition by antibodies PFA1 and WO2. All three antibodies recognize the same immunodominant B‐cell epitope of Aβ. By similarity, residues Phe–Arg–His of Aβ would be a major portion of the C706 epitope. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
10.
γ‐Enolase is a neurotrophic‐like factor promoting growth, differentiation, survival and regeneration of neurons. Its neurotrophic activity is regulated by cysteine protease cathepsin X which cleaves the C‐terminal end of the molecule. We have investigated the expression and colocalization of γ‐enolase and cathepsin X in brains of Tg2576 mice overexpressing amyloid precursor protein. In situ hybridization of γ‐enolase and cathepsin X revealed that mRNAs for both enzymes were expressed abundantly around amyloid plaques. Immunostaining demonstrated that the C‐terminally cleaved form of γ‐enolase was present in the immediate plaque vicinity, whereas the intact form, exhibiting neurotrophic activity, was observed in microglia cells in close proximity to senile plaque. The upregulation of γ‐enolase in microglial cells in response to amyloid‐β peptide (Aβ) was confirmed in mouse microglial cell line EOC 13.31 and primary microglia and medium enriched with γ‐enolase proved to be neuroprotective against Aβ toxicity; however, the effect was reversed by cathepsin X proteolytic activity. These results demonstrate an upregulation of γ‐enolase in microglia cells surrounding amyloid plaques in Tg2576 transgenic mice and demonstrate its neuroprotective role in amyloid‐β‐related neurodegeneration.  相似文献   

11.
12.
13.
The present study was designed to investigate the role of β‐amyloid (Aβ1‐42) in inducing neuronal pyroptosis and its mechanism. Mice cortical neurons (MCNs) were used in this study, LPS + Nigericin was used to induce pyroptosis in MCNs (positive control group), and Aβ1‐42 was used to interfere with MCNs. In addition, propidium iodide (PI) staining was used to examine cell permeability, lactate dehydrogenase (LDH) release assay was employed to detect cytotoxicity, immunofluorescence (IF) staining was used to investigate the expression level of the key protein GSDMD, Western blot was performed to detect the expression levels of key proteins, and enzyme‐linked immunosorbent assay (ELISA) was utilized to determine the expression levels of inflammatory factors in culture medium, including IL‐1β, IL‐18 and TNF‐α. Small interfering RNA (siRNA) was used to silence the mRNA expression of caspase‐1 and GSDMD, and Aβ1‐42 was used to induce pyroptosis, followed by investigation of the role of caspase‐1‐mediated GSDMD cleavage in pyroptosis. In addition, necrosulfonamide (NSA), an inhibitor of GSDMD oligomerization, was used for pre‐treatment, and Aβ1‐42 was subsequently used to observe the pyroptosis in MCNs. Finally, AAV9‐siRNA‐caspase‐1 was injected into the tail vein of APP/PS1 double transgenic mice (Alzheimer's disease mice) for caspase‐1 mRNA inhibition, followed by observation of behavioural changes in mice and measurement of the expression of inflammatory factors and pyroptosis‐related protein. As results, Aβ1‐42 could induce pyroptosis in MCNs, increase cell permeability and enhance LDH release, which were similar to the LPS + Nigericin‐induced pyroptosis. Meanwhile, the expression levels of cellular GSDMD and p30‐GSDMD were up‐regulated, the levels of NLRP3 inflammasome and GSDMD‐cleaved protein caspase‐1 were up‐regulated, and the levels of inflammatory factors in the medium were also up‐regulated. siRNA intervention in caspase‐1 or GSDMD inhibited Aβ1‐42‐induced pyroptosis, and NSA pre‐treatment also caused the similar inhibitory effects. The behavioural ability of Alzheimer's disease (AD) mice was relieved after the injection of AAV9‐siRNA‐caspase‐1, and the expression of pyroptosis‐related protein in the cortex and hippocampus was down‐regulated. In conclusion, Aβ1‐42 could induce pyroptosis by GSDMD protein, and NLRP3‐caspase‐1 signalling was an important signal to mediate GSDMD cleavage, which plays an important role in Aβ1‐42‐induced pyroptosis in neurons. Therefore, GSDMD is expected to be a novel therapeutic target for AD.  相似文献   

14.
An important pathological hallmark of Alzheimer's disease (AD) is the deposition of amyloid‐beta (Aβ) peptides in the brain parenchyma, leading to neuronal death and impaired learning and memory. The protease γ‐secretase is responsible for the intramembrane proteolysis of the amyloid‐β precursor protein (APP), which leads to the production of the toxic Aβ peptides. Thus, an attractive therapeutic strategy to treat AD is the modulation of the γ‐secretase activity, to reduce Aβ42 production. Because phosphorylation of proteins is a post‐translational modification known to modulate the activity of many different enzymes, we used electrospray (LC‐MS/MS) mass spectrometry to identify new phosphosites on highly purified human γ‐secretase. We identified 11 new single or double phosphosites in two well‐defined domains of Presenilin‐1 (PS1), the catalytic subunit of the γ‐secretase complex. Next, mutagenesis and biochemical approaches were used to investigate the role of each phosphosite in the maturation and activity of γ‐secretase. Together, our results suggest that the newly identified phosphorylation sites in PS1 do not modulate γ‐secretase activity and the production of the Alzheimer's Aβ peptides. Individual PS1 phosphosites shall probably not be considered therapeutic targets for reducing cerebral Aβ plaque formation in AD.

  相似文献   


15.
Accumulating evidence suggests that extracellular α‐synuclein (eSNCA) plays an important role in the pathogenesis of Parkinson's disease or related synucleinopathies by inducing neurotoxicity directly or indirectly via microglial or astroglial activation. However, the mechanisms by which this occurs remain to be characterized. To explore these mechanisms, we combined three biochemical techniques – stable isotope labeling of amino acid in cell cultures (SILAC), biotin labeling of plasma membrane proteins followed by affinity purification, and analysis of unique proteins binding to SNCA peptides on membrane arrays. The SILAC proteomic analysis identified 457 proteins, of which, 245 or 172 proteins belonged to membrane or membrane associated proteins, depending on the various bioinformatics tools used for interpretation. In dopamine neuronal cells treated with eSNCA, the levels of 86 membrane proteins were increased and 35 were decreased compared with untreated cells. In peptide array analysis, 127 proteins were identified as possibly interacting with eSNCA. Of those, seven proteins were overlapped with the membrane proteins that displayed alterations in relative abundance after eSNCA treatment. One was ciliary neurotrophic factor receptor, which appeared to modulate eSNCA‐mediated neurotoxicity via mechanisms related to JAK1/STAT3 signaling but independent of eSNCA endocytosis.  相似文献   

16.
β‐dystroglycan (β‐DG) is a widely expressed transmembrane protein that plays important roles in connecting the extracellular matrix to the cytoskeleton, and thereby contributing to plasma membrane integrity and signal transduction. We previously observed nuclear localization of β‐DG in cultured cell lines, implying the existence of a nuclear targeting mechanism that directs it to the nucleus instead of the plasma membrane. In this study, we delineate the nuclear import pathway of β‐DG, characterizing a functional nuclear localization signal (NLS) in the β‐DG cytoplasmic domain, within amino acids 776–782. The NLS either alone or in the context of the whole β‐DG protein was able to target the heterologous GFP protein to the nucleus, with site‐directed mutagenesis indicating that amino acids R779 and K780 are critical for NLS functionality. The nuclear transport molecules Importin (Imp)α and Impβ bound with high affinity to the NLS of β‐DG and were found to be essential for NLS‐dependent nuclear import in an in vitro reconstituted nuclear transport assay; cotransfection experiments confirmed the dependence on Ran for nuclear accumulation. Intriguingly, experiments suggested that tyrosine phosphorylation of β‐DG may result in cytoplasmic retention, with Y892 playing a key role. β‐DG thus follows a conventional Impα/β‐dependent nuclear import pathway, with important implications for its potential function in the nucleus. J. Cell. Biochem. 110: 706–717, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
Reports describing the effect of interferon‐γ (IFNγ) on interleukin‐1β (IL‐1β) production are conflicting. We resolve this controversy by showing that IFNγ potentiates IL‐1β release from human cells, but transiently inhibits the production of IL‐1β from mouse cells. Release from this inhibition is dependent on suppressor of cytokine signalling 1. IL‐1β and Th17 cells are pathogenic in mouse models for autoimmune disease, which use Mycobacterium tuberculosis (MTB), in which IFNγ and IFNβ are anti‐inflammatory. We observed that these cytokines suppress IL‐1β production in response to MTB, resulting in a reduced number of IL‐17‐producing cells. In human cells, IFNγ increased IL‐1β production, and this might explain why IFNγ is detrimental for multiple sclerosis. In mice, IFNγ decreased IL‐1β and subsequently IL‐17, indicating that the adaptive immune response can provide a systemic, but transient, signal to limit inflammation.  相似文献   

18.
Mitochondria are physically and biochemically in contact with other organelles including the endoplasmic reticulum (ER). Such contacts are formed between mitochondria‐associated ER membranes (MAM), specialized subregions of ER, and the outer mitochondrial membrane (OMM). We have previously shown increased expression of MAM‐associated proteins and enhanced ER to mitochondria Ca2+ transfer from ER to mitochondria in Alzheimer's disease (AD) and amyloid β‐peptide (Aβ)‐related neuronal models. Here, we report that siRNA knockdown of mitofusin‐2 (Mfn2), a protein that is involved in the tethering of ER and mitochondria, leads to increased contact between the two organelles. Cells depleted in Mfn2 showed increased Ca2+ transfer from ER to mitchondria and longer stretches of ER forming contacts with OMM. Interestingly, increased contact resulted in decreased concentrations of intra‐ and extracellular Aβ40 and Aβ42. Analysis of γ‐secretase protein expression, maturation and activity revealed that the low Aβ concentrations were a result of impaired γ‐secretase complex function. Amyloid‐β precursor protein (APP), β‐site APP‐cleaving enzyme 1 and neprilysin expression as well as neprilysin activity were not affected by Mfn2 siRNA treatment. In summary, our data shows that modulation of ER–mitochondria contact affects γ‐secretase activity and Aβ generation. Increased ER–mitochondria contact results in lower γ‐secretase activity suggesting a new mechanism by which Aβ generation can be controlled.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号