首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Based on previous cloning of VpRPW8‐e, we obtained a 1,126 bp VpRPW8‐e promoter sequence in this study. A large number of TATA‐boxes, CAAT‐boxes, and other cis‐acting elements were predicted including light‐responsive elements, hormone‐responsive elements, stress‐responsive elements, and growth‐ and development‐associated elements within the promoter sequence. To further investigate the function of this promoter, we examined its activity in response to biotic and abiotic stress. The VpRPW8‐e promoter was strongly activated by Plasmopara viticola infection, and activation also occurred when the orientation of the promoter was reversed, although to a lesser extent. Deletion analysis showed that the ?1,126 to ?475 bp region of VpRPW8‐e promoter had high activity. A promoter fragment 5′ deleted to ?475 bp (P?475) was activated in response to heat and cold stress, and even more strongly in response to Phytophthora capsici and salicylic acid (SA). Furthermore, Transgenic Nicotiana benthamiana were generated, VpRPW8‐e driven by P?475 enhanced resistance to Ph. capsici in N. benthamiana. Based on these results, the ?475 bp region was deduced to be an indispensable part of the VpRPW8‐e promoter. VpRPW8‐e promoter is involved in pathogen‐ and stress‐inducible expression.  相似文献   

2.
8‐oxo‐7,8‐dihydroxy‐2′‐deoxyguanosine (8‐oxo‐dG) has high mutagenic potential as it is prone to mispair with deoxyadenine (dA). In order to maintain genomic integrity, post‐replicative 8‐oxo‐dG:dA mispairs are removed through DNA polymerase lambda (Pol λ)‐dependent MUTYH‐initiated base excision repair (BER). Here, we describe seven novel crystal structures and kinetic data that fully characterize 8‐oxo‐dG bypass by Pol λ. We demonstrate that Pol λ has a flexible active site that can tolerate 8‐oxo‐dG in either the anti‐ or syn‐conformation. Importantly, we show that discrimination against the pro‐mutagenic syn‐conformation occurs at the extension step and identify the residue responsible for this selectivity. This residue acts as a kinetic switch, shunting repair toward long‐patch BER upon correct dCMP incorporation, thus enhancing repair efficiency. Moreover, this switch also provides a potential mechanism to increase repair fidelity of MUTYH‐initiated BER.  相似文献   

3.
CD8+ cytotoxic T lymphocytes (CTLs) are critical mediators of anti‐tumor immunity, and controlling the mechanisms that govern CTL functions could be crucial for enhancing patient outcome. Previously, we reported that hepatocyte growth factor (HGF) limits effective murine CTL responses via antigen‐presenting cells. Here, we show that a fraction of murine effector CTLs expresses the HGF receptor c‐Met (c‐Met+ CTLs). Phenotypic and functional analysis of c‐Met+ CTLs reveals that they display enhanced cytolytic capacities compared to their c‐Met? CTL counterparts. Furthermore, HGF directly restrains the cytolytic function of c‐Met+ CTLs in cell‐mediated cytotoxicity reactions in vitro and in vivo and abrogates T‐cell responses against metastatic melanoma in vivo. Finally, we establish in three murine tumor settings and in human melanoma tissues that c‐Met+ CTLs are a naturally occurring CD8+ T‐cell population. Together, our findings suggest that the HGF/c‐Met pathway could be exploited to control CD8+ T‐cell‐mediated anti‐tumor immunity.  相似文献   

4.
5.
6.
7.
New vaccines are needed to combat Mycobacterium tuberculosis (MTB) infections. The currently employed Bacillus Calmette‐Guérin vaccine is becoming ineffective, due in part to the emergence of multidrug‐resistant tuberculosis (MDR‐TB) strains and the reduced immune capacity in cases of HIV coinfection. CD8+ T cells play an important role in the protective immunity against MTB infections, and the identification of immunogenic CD8+ T cell epitopes specific for MTB is essential for the design of peptide‐based vaccines. To identify CD8+ T cell epitopes of MTB proteins, we screened a set of 94 MTB antigens for HLA class I A*11:01‐binding motifs. HLA‐A*11:01 is one of the most prevalent HLA molecules in Southeast Asians, and definition of T cell epitopes it can restrict would provide significant coverage for the Asian population. Peptides that bound with high affinity to purified HLA molecules were subsequently evaluated in functional assays to detect interferon‐γ release and CD8+ T cell proliferation in active pulmonary TB patients. We identified six novel epitopes, each derived from a unique MTB antigen, which were recognized by CD8+ T cells from active pulmonary TB patients. In addition, a significant level of epitope‐specific T cells could be detected ex vivo in peripheral blood mononuclear cells from active TB patients by an HLA‐A*11:01 dextramer carrying the peptide Rv3130c194‐204 (from the MTB triacylglycerol synthase Tgs1), which was the most frequently recognized epitope in our peptide library. In conclusion, this study identified six dominant CD8+ T cell epitopes that may be considered potential targets for subunit vaccines or diagnostic strategies against TB.  相似文献   

8.
The cellular levels of methylglyoxal (MG), a toxic byproduct of glycolysis, rise under various abiotic stresses in plants. Detoxification of MG is primarily through the glyoxalase pathway. The first enzyme of the pathway, glyoxalase I (GLYI), is a cytosolic metalloenzyme requiring either Ni2+ or Zn2+ for its activity. Plants possess multiple GLYI genes, of which only some have been partially characterized; hence, the precise molecular mechanism, subcellular localization and physiological relevance of these diverse isoforms remain enigmatic. Here, we report the biochemical properties and physiological role of a putative chloroplast‐localized GLYI enzyme, OsGLYI‐8, from rice, which is strikingly different from all hitherto studied GLYI enzymes in terms of its intracellular localization, metal dependency and kinetics. In contrast to its predicted localization, OsGLYI‐8 was found to localize in the nucleus along with its substrate, MG. Further, OsGLYI‐8 does not show a strict requirement for metal ions for its activity, is functional as a dimer and exhibits unusual biphasic steady‐state kinetics with a low‐affinity and a high‐affinity substrate‐binding component. Loss of AtGLYI‐2, the closest Arabidopsis ortholog of OsGLYI‐8, results in severe germination defects in the presence of MG and growth retardation under salinity stress conditions. These defects were rescued upon complementation with AtGLYI‐2 or OsGLYI‐8. Our findings thus provide evidence for the presence of a GLYI enzyme and MG detoxification in the nucleus.  相似文献   

9.
2‐C‐Methyl‐d ‐erythritol‐2,4‐cyclodiphosphate (MEcDP) is an intermediate of the plastid‐localized 2‐C‐methyl‐d ‐erythritol‐4‐phosphate (MEP) pathway which supplies isoprenoid precursors for photosynthetic pigments, redox co‐factor side chains, plant volatiles, and phytohormones. The Arabidopsis hds‐3 mutant, defective in the 1‐hydroxy‐2‐methyl‐2‐(E)‐butenyl‐4‐diphosphate synthase step of the MEP pathway, accumulates its substrate MEcDP as well as the free tetraol 2‐C‐methyl‐d ‐erythritol (ME) and glucosylated ME metabolites, a metabolic diversion also occurring in wild type plants. MEcDP dephosphorylation to the free tetraol precedes glucosylation, a process which likely takes place in the cytosol. Other MEP pathway intermediates were not affected in hds‐3. Isotopic labeling, dark treatment, and inhibitor studies indicate that a second pool of MEcDP metabolically isolated from the main pathway is the source of a signal which activates salicylic acid induced defense responses before its conversion to hemiterpene glycosides. The hds‐3 mutant also showed enhanced resistance to the phloem‐feeding aphid Brevicoryne brassicae due to its constitutively activated defense response. However, this MEcDP‐mediated defense response is developmentally dependent and is repressed in emerging seedlings. MEcDP and ME exogenously applied to adult leaves mimics many of the gene induction effects seen in the hds‐3 mutant. In conclusion, we have identified a metabolic shunt from the central MEP pathway that diverts MEcDP to hemiterpene glycosides via ME, a process linked to balancing plant responses to biotic stress.  相似文献   

10.
CRISPR/Cas9 technology has revolutionized biology. This prokaryotic defense system against foreign DNA has been repurposed for genome editing in a broad range of cell tissues and organisms. Trypanosomatids are flagellated protozoa belonging to the order Kinetoplastida. Some of its most representative members cause important human diseases affecting millions of people worldwide, such as Chagas disease, sleeping sickness and different forms of leishmaniases. Trypanosomatid infections represent an enormous burden for public health and there are no effective treatments for most of the diseases they cause. Since the emergence of the CRISPR/Cas9 technology, the genetic manipulation of these parasites has notably improved. As a consequence, genome editing is now playing a key role in the functional study of proteins, in the characterization of metabolic pathways, in the validation of alternative targets for antiparasitic interventions, and in the study of parasite biology and pathogenesis. In this work we review the different strategies that have been used to adapt the CRISPR/Cas9 system to Trypanosoma cruzi, Trypanosoma brucei, and Leishmania spp., as well as the research progress achieved using these approaches. Thereby, we will present the state‐of‐the‐art molecular tools available for genome editing in trypanosomatids to finally point out the future perspectives in the field.  相似文献   

11.
12.
13.
Although bryophytes are a dominant vegetation component of boreal and alpine ecosystems, little is known about their associated fungal communities. HPLC assays of ergosterol (fungal biomass) and amplicon pyrosequencing of the ITS2 region of rDNA were used to investigate how the fungal communities associated with four bryophyte species changed across an elevational gradient transitioning from conifer forest to the low‐alpine. Fungal biomass and OTU richness associated with the four moss hosts did not vary significantly across the gradient (P > 0.05), and both were more strongly affected by host and tissue type. Despite largely constant levels of fungal biomass, distinct shifts in community composition of fungi associated with Hylocomium, Pleurozium and Polytrichum occurred between the elevation zones of the gradient. This likely is a result of influence on fungal communities by major environmental factors such as temperature, directly or indirectly mediated by, or interacting with, the response of other components of the vegetation (i.e. the dominant trees). Fungal communities associated with Dicranum were an exception, exhibiting spatial autocorrelation between plots, and no significant structuring by elevation. Nevertheless, the detection of distinct fungal assemblages associated with a single host growing in different elevation zones along an elevational gradient is of particular relevance in the light of the ongoing changes in vegetation patterns in boreal and alpine systems due to global climate warming.  相似文献   

14.
15.
16.
UV RESISTANCE LOCUS8 (UVR8) is a photoreceptor for ultraviolet‐B (UV‐B) light that initiates photomorphogenic responses in plants. UV‐B photoreception causes rapid dissociation of dimeric UVR8 into monomers that interact with CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) to initiate signal transduction. Experiments with purified UVR8 show that the dimer is maintained by salt‐bridge interactions between specific charged amino acids across the dimer interface. However, little is known about the importance of these charged amino acids in determining dimer/monomer status and UVR8 function in plants. Here we evaluate the use of different methods to examine dimer/monomer status of UVR8 and show that mutations of several salt‐bridge amino acids affect dimer/monomer status, interaction with COP1 and photoreceptor function of UVR8 in vivo. In particular, the salt‐bridges formed between arginine 286 and aspartates 96 and 107 are key to dimer formation. Mutation of arginine 286 to alanine impairs dimer formation, interaction with COP1 and function in vivo, whereas mutation to lysine gives a weakened dimer that is functional in vivo, indicating the importance of the positive charge of the arginine/lysine residue for dimer formation. Notably, a UVR8 mutant in which aspartates 96 and 107 are conservatively mutated to asparagine is strongly impaired in dimer formation but mediates UV‐B responses in vivo with a similar dose–response relationship to wild‐type. The UV‐B responsiveness of this mutant does not correlate with dimer formation and monomerisation, indicating that monomeric UVR8 has the potential for UV‐B photoreception, initiating signal transduction and responses in plants.  相似文献   

17.
Potato virus Y (PVY) is one of the most damaging viruses of tobacco. In particular, aggressive necrotic strains (PVYN) lead to considerable losses in yield. The main source of resistance against PVY is linked to the va locus. However, va‐overcoming PVY isolates inducing necrotic symptoms were observed in several countries. In this context, it is important to find va‐independent protection strategies. In a previous study, the phenotyping of 162 tobacco varieties revealed 10 accessions that do not carry the va allele and do not exhibit typical PVYN‐induced veinal necrosis. Despite the absence of necrotic symptoms, normal viral accumulation in these plants suggests a va‐independent mechanism of tolerance to PVYN‐induced systemic veinal necrosis. Fine mapping of the genetic determinant(s) was performed in a segregating F2 population. The tolerance trait is inherited as a single recessive gene, and allelism tests demonstrated that eight of the 10 tolerant varieties carry the same determinant. Anchoring the linkage map to the tobacco genome physical map allowed the identification of a RPP8‐like R gene, called NtTPN1 (for t abacum P VY‐induced 相似文献   

18.
The extrinsic apoptosis pathway is initiated by binding of death ligands to death receptors resulting in the formation of the death‐inducing signaling complex (DISC). Activation of procaspase‐8 within the DISC and its release from the signaling complex is required for processing executor caspases and commiting cell death. Here, we report that the atypical cadherin FAT1 interacts with caspase‐8 preventing the association of caspase‐8 with the DISC. We identified FAT1 in a genome‐wide siRNA screen for synthetic lethal interactions with death receptor‐mediated apoptosis. Knockdown of FAT1 sensitized established and patient‐derived glioblastoma cell lines for apoptosis transduced by cell death ligands. Depletion of FAT1 resulted in enhanced procaspase‐8 recruitment to the DISC and increased formation of caspase‐8 containing secondary signaling complexes. In addition, FAT1 knockout cell lines generated by CRISPR/Cas9‐mediated genome engineering were more susceptible for death receptor‐mediated apoptosis. Our findings provide evidence for a mechanism to control caspase‐8‐dependent cell death by the atypical cadherin FAT1. These results contribute towards the understanding of effector caspase regulation in physiological conditions.  相似文献   

19.
20.
Peroxiredoxin‐5 (PRDX5) is an antioxidant enzyme which differs from the other peroxiredoxins with regards to its enzymatic mechanism, its high affinity for organic peroxides and peroxynitrite and its wide subcellular distribution. In particular, the mitochondrial isoform of PRDX5 confers a remarkable cytoprotection toward oxidative stress to mammalian cells. Mitochondrial dysfunction and disruption of Ca2+ homeostasis are implicated in neurodegeneration. Growing evidence supports that endoplasmic reticulum (ER) could operate in tandem with mitochondria to regulate intracellular Ca2+ fluxes in neurodegenerative processes. Here, we overexpressed mitochondrial PRDX5 in SH‐SY5Y cells to dissect the role of this enzyme in 1‐methyl‐4‐phenylpyridinium (MPP)+‐induced cell death. Our data show that mitochondria‐dependent apoptosis triggered by MPP+, assessed by the measurement of caspase‐9 activation and mitochondrial DNA damage, is prevented by mitochondrial PRDX5 overexpression. Moreover, PRDX5 overexpression blocks the increase in intracellular Ca2+, Ca2+‐dependent activation of calpains and Bax cleavage. Finally, using Ca2+ channel inhibitors (Nimodipine, Dantrolene and 2‐APB), we show that Ca2+ release arises essentially from ER stores through 1,4,5‐inositol‐trisphosphate receptors (IP3R). Altogether, our results suggest that the MPP+ mitochondrial pathway of apoptosis is regulated by mitochondrial PRDX5 in a process that could involve redox modulation of Ca2+ transporters via a crosstalk between mitochondria and ER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号