首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glucose is the main energy substrate for neurons, and ketone bodies are known to be alternative substrates. However, the capacity of ketone bodies to support different neuronal functions is still unknown. Thus, a change in energy substrate from glucose alone to a combination of glucose and β‐hydroxybutyrate might change neuronal function as there is a known coupling between metabolism and neurotransmission. The purpose of this study was to shed light on the effects of the ketone body β‐hydroxybutyrate on glycolysis and neurotransmission in cultured murine glutamatergic neurons. Previous studies have shown an effect of β‐hydroxybutyrate on glucose metabolism, and the present study further specified this by showing attenuation of glycolysis when β‐hydroxybutyrate was present in these neurons. In addition, the NMDA receptor‐induced calcium responses in the neurons were diminished in the presence of β‐hydroxybutyrate, whereas a direct effect of the ketone body on transmitter release was absent. However, the presence of β‐hydroxybutyrate augmented transmitter release induced by the KATP channel blocker glibenclamide, thus giving an indirect indication of the involvement of KATP channels in the effects of ketone bodies on transmitter release.

  相似文献   


2.
3.
Our recent studies have shown that endogenous zinc, co‐released with glutamate from the synaptic terminals of vertebrate retinal photoreceptors, provides a feedback mechanism that reduces calcium entry and the concomitant vesicular release of glutamate. We hypothesized that zinc feedback may serve to protect the retina from glutamate excitotoxicity, and conducted in vivo experiments on the retina of the skate (Raja erinacea) to determine the effects of removing endogenous zinc by chelation. These studies showed that removal of zinc by injecting the zinc chelator histidine results in inner retinal damage similar to that induced by the glutamate receptor agonist kainic acid. In contrast, when an equimolar quantity of zinc followed the injection of histidine, the retinal cells were unaffected. Our results are a good indication that zinc, co‐released with glutamate by photoreceptors, provides an auto‐feedback system that plays an important cytoprotective role in the retina.

  相似文献   


4.
Glutamate transport is a critical process in the brain that maintains low extracellular levels of glutamate to allow for efficient neurotransmission and prevent excitotoxicity. Loss of glutamate transport function is implicated in epilepsy, traumatic brain injury, and amyotrophic lateral sclerosis. It remains unclear whether or not glutamate transport can be modulated in these disease conditions to improve outcome. Here, we show that sirtuin (SIRT)4, a mitochondrial sirtuin, is up‐regulated in response to treatment with the potent excitotoxin kainic acid. Loss of SIRT4 leads to a more severe reaction to kainic acid and decreased glutamate transporter expression and function in the brain. Together, these results indicate a critical and novel stress response role for SIRT4 in promoting proper glutamate transport capacity and protecting against excitotoxicity.

  相似文献   


5.
The mechanistic link of ketosis to neuroprotection under certain pathological conditions continues to be explored. We investigated whether chronic ketosis induced by ketogenic diet results in the partitioning of ketone bodies toward oxidative metabolism in brain. We hypothesized that diet‐induced ketosis results in increased shunting of ketone bodies toward citric acid cycle and amino acids with decreased carbon shunting from glucose. Rats were fed standard (STD) or ketogenic (KG) diets for 3.5 weeks and then infused with [U‐13C]glucose or [U‐13C]acetoacetate tracers. Concentrations and 13C‐labeling pattern of citric acid cycle intermediates and amino acids were analyzed from brain homogenates using stable isotopomer mass spectrometry analysis. The contribution of [U‐13C]glucose to acetyl‐CoA and amino acids decreased by ~ 30% in the KG group versus STD, whereas [U‐13C]acetoacetate contributions were more than two‐fold higher. The concentration of GABA remained constant across groups; however, the 13C labeling of GABA was markedly increased in the KG group infused with [U‐13C]acetoacetate compared to STD. This study reveals that there is a significant contribution of ketone bodies to oxidative metabolism and GABA in diet‐induced ketosis. We propose that this represents a fundamental mechanism of neuroprotection under pathological conditions.

  相似文献   


6.
7.
The role of physical exercise as a neuroprotective agent against ischemic injury has been extensively discussed. Nevertheless, the mechanisms underlying the effects of physical exercise on cerebral ischemia remain poorly understood. Here, we investigate the hypothesis that physical exercise increases ischemic tolerance by decreasing the induction of cellular apoptosis and glutamate release. Rats (n = 50) were submitted to a swimming exercise protocol for 8 weeks. Hippocampal slices were then submitted to oxygen and glucose deprivation. Cellular viability, pro‐apoptotic markers (Caspase 8, Caspase 9, Caspase 3, and apoptosis‐inducing factor), and glutamate release were analyzed. The percentage of cell death, the amount of glutamate release, and the expression of the apoptotic markers were all decreased in the exercise group when compared to the sedentary group after oxygen and glucose deprivation. Our results suggest that physical exercise protects hippocampal slices from the effects of oxygen and glucose deprivation, probably by a mechanism involving both the decrease of glutamatergic excitotoxicity and apoptosis induction.

  相似文献   


8.
Intravenous immunoglobulin (IVIG) contains anti‐amyloid‐β antibodies as well as antibodies providing immunomodulatory effects that may modify chronic inflammation in Alzheimer's disease. Answers to important questions about IVIG transport into the central nervous system and assessments of any impact amyloid‐β has on this transport can be provided by in vitro models of the blood–brain barrier. In this study, amyloid‐β[1‐42] was pre‐aggregated into fibrillar or oligomeric structures, and various concentrations were incubated in the brain side of the blood–brain barrier model, followed by IVIG administration in the blood side at the therapeutically relevant concentrations of 5 and 20 mg/mL. IVIG accumulated in the brain side at physiologically relevant levels, with amyloid‐β pre‐incubation increasing IVIG accumulation. The increased transport effect was dependent on amyloid‐β structural form, amyloid‐β concentration, and IVIG dose. IVIG was found to decrease monocyte chemotactic protein‐1 levels 6.5–18% when low amyloid‐β levels were present and increase levels 4.2–23% when high amyloid‐β levels were present. Therefore, the presence, concentration, and structure of amyloid‐β plays an important role in the effect of IVIG therapy in the brain.

  相似文献   


9.
Parkinson's disease is the second most common neurodegenerative disease and its pathogenesis is closely associated with oxidative stress. Deposition of aggregated α‐synuclein (α‐Syn) occurs in familial and sporadic forms of Parkinson's disease. Here, we studied the effect of oligomeric α‐Syn on one of the major markers of oxidative stress, lipid peroxidation, in primary co‐cultures of neurons and astrocytes. We found that oligomeric but not monomeric α‐Syn significantly increases the rate of production of reactive oxygen species, subsequently inducing lipid peroxidation in both neurons and astrocytes. Pre‐incubation of cells with isotope‐reinforced polyunsaturated fatty acids (D‐PUFAs) completely prevented the effect of oligomeric α‐Syn on lipid peroxidation. Inhibition of lipid peroxidation with D‐PUFAs further protected cells from cell death induced by oligomeric α‐Syn. Thus, lipid peroxidation induced by misfolding of α‐Syn may play an important role in the cellular mechanism of neuronal cell loss in Parkinson's disease.

  相似文献   


10.
Sports‐related head impact and injury has become a very highly contentious public health and medico‐legal issue. Near‐daily news accounts describe the travails of concussed athletes as they struggle with depression, sleep disorders, mood swings, and cognitive problems. Some of these individuals have developed chronic traumatic encephalopathy, a progressive and debilitating neurodegenerative disorder. Animal models have always been an integral part of the study of traumatic brain injury in humans but, historically, they have concentrated on acute, severe brain injuries. This review will describe a small number of new and emerging animal models of sports‐related head injury that have the potential to increase our understanding of how multiple mild head impacts, starting in adolescence, can have serious psychiatric, cognitive and histopathological outcomes much later in life.

  相似文献   


11.
The β‐amyloid precursor protein (APP) has been extensively studied for its role as the precursor of the β‐amyloid protein (Aβ) of Alzheimer's disease. However, the normal function of APP remains largely unknown. This article reviews studies on the structure, expression and post‐translational processing of APP, as well as studies on the effects of APP in vitro and in vivo. We conclude that the published data provide strong evidence that APP has a trophic function. APP is likely to be involved in neural stem cell development, neuronal survival, neurite outgrowth and neurorepair. However, the mechanisms by which APP exerts its actions remain to be elucidated. The available evidence suggests that APP interacts both intracellularly and extracellularly to regulate various signal transduction mechanisms.

  相似文献   


12.
The deposition of amyloid‐β (Aβ) peptide, which is generated from amyloid precursor protein (APP), is the pathological hallmark of Alzheimer's disease (AD). Three APP familial AD mutations (D678H, D678N, and H677R) located at the sixth and seventh amino acid of Aβ have distinct effect on Aβ aggregation, but their influence on the physiological and pathological roles of APP remain unclear. We found that the D678H mutation strongly enhances amyloidogenic cleavage of APP, thus increasing the production of Aβ. This enhancement of amyloidogenic cleavage is likely because of the acceleration of APPD678H sorting into the endosomal‐lysosomal pathway. In contrast, the APPD678N and APPH677R mutants do not cause the same effects. Therefore, this study indicates a regulatory role of D678H in APP sorting and processing, and provides genetic evidence for the importance of APP sorting in AD pathogenesis.

  相似文献   


13.
Ethanol is a known neuromodulatory agent with reported actions at a range of neurotransmitter receptors. Here, we measured the effect of alcohol on metabolism of [3‐13C]pyruvate in the adult Guinea pig brain cortical tissue slice and compared the outcomes to those from a library of ligands active in the GABAergic system as well as studying the metabolic fate of [1,2‐13C]ethanol. Analyses of metabolic profile clusters suggest that the significant reductions in metabolism induced by ethanol (10, 30 and 60 mM) are via action at neurotransmitter receptors, particularly α4β3δ receptors, whereas very low concentrations of ethanol may produce metabolic responses owing to release of GABA via GABA transporter 1 (GAT1) and the subsequent interaction of this GABA with local α5‐ or α1‐containing GABA(A)R. There was no measureable metabolism of [1,2‐13C]ethanol with no significant incorporation of 13C from [1,2‐13C]ethanol into any measured metabolite above natural abundance, although there were measurable effects on total metabolite sizes similar to those seen with unlabelled ethanol.

  相似文献   


14.
Both dopamine and glutamate are critically involved in cognitive processes such as working memory. Astrocytes, which express dopamine receptors, are essential elements in the termination of glutamatergic signaling: the astrocytic glutamate transporter GLT‐1 is responsible for > 90% of cortical glutamate uptake. The effect of dopamine depletion on glutamate transporters in the prefrontal cortex (PFC) remains unknown. In an effort to determine if astrocytes are a locus of cortical dopamine–glutamate interactions, we examined the effects of chronic dopamine denervation on PFC protein and mRNA levels of glutamate transporters. PFC dopamine denervation elicited a marked increase in GLT‐1 protein levels, but had no effect on levels of other glutamate transporters; high‐affinity glutamate transport was positively correlated with the extent of dopamine depletion. GLT‐1 gene expression was not altered. Our data suggest that dopamine depletion may lead to post‐translational modifications that result in increased expression and activity of GLT‐1 in PFC astrocytes.

  相似文献   


15.
The administration of pan histone deacetylase (HDAC) inhibitors reduces ischemic damage to the CNS, both in vitro and in animal models of stroke, via mechanisms which we are beginning to understand. The acetylation of p53 is regulated by Class I HDACs and, because p53 appears to play a role in ischemic pathology, the purpose of this study was to discover, using an in vitro white matter ischemia model and an in vivo cerebral ischemia model, if neuroprotection mediated by HDAC inhibition depended on p53 expression. Optic nerves were excised from wild‐type and p53‐deficient mice, and then subjected to oxygen–glucose deprivation in the presence and absence of a specific inhibitor of Class I HDACs (MS‐275, entinostat) while compound action potentials were recorded. Furthermore, transient focal ischemia was imposed on wild‐type and p53‐deficient mice, which were subsequently treated with MS‐275. Interestingly, and in both scenarios, the beneficial effects of MS‐275 were most pronounced when p53 was absent. These results suggest that modulation of p53 activity is not responsible for MS‐275‐mediated neuroprotection, and further illustrate how HDAC inhibitors variably influence p53 and associated apoptotic pathways.

  相似文献   


16.
Methyl‐β‐cyclodextrin (MβCD) is a reagent that depletes cholesterol and disrupts lipid rafts, a type of cholesterol‐enriched cell membrane microdomain. Lipid rafts are essential for neuronal functions such as synaptic transmission and plasticity, which are sensitive to even low doses of MβCD. However, how MβCD changes synaptic function, such as N‐methyl‐d ‐aspartate receptor (NMDA‐R) activity, remains unclear. We monitored changes in synaptic transmission and plasticity after disrupting lipid rafts with MβCD. At low concentrations (0.5 mg/mL), MβCD decreased basal synaptic transmission and miniature excitatory post‐synaptic current without changing NMDA‐R‐mediated synaptic transmission and the paired‐pulse facilitation ratio. Interestingly, low doses of MβCD failed to deplete cholesterol or affect α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid receptor (AMPA‐R) and NMDA‐R levels, while clearly reducing GluA1 levels selectively in the synaptosomal fraction. Low doses of MβCD decreased the inhibitory effects of NASPM, an inhibitor for GluA2‐lacking AMPA‐R. MβCD successfully decreased NMDA‐R‐mediated long‐term potentiation but did not affect the formation of either NMDA‐R‐mediated or group I metabotropic glutamate receptor‐dependent long‐term depression. MβCD inhibited de‐depression without affecting de‐potentiation. These results suggest that MβCD regulates GluA1‐dependent synaptic potentiation but not synaptic depression in a cholesterol‐independent manner.

  相似文献   


17.
18.
The overlapping clinical features of Alzheimer's disease (AD) and Dementia with Lewy bodies (DLB) make differentiation difficult in the clinical environment. Evaluating the CSF levels of biomarkers in AD and DLB patients could facilitate clinical diagnosis. CSF Visinin‐like protein‐1 (VILIP‐1), a calcium‐mediated neuronal injury biomarker, has been described as a novel biomarker for AD. The aim of this study was to investigate the diagnostic utility of CSF VILIP‐1 and VILIP‐1/Aβ1–42 ratio to distinguish AD from DLB. Levels of CSF VILIP‐1, t‐tau, p‐tau181P, Aβ1–42, and α‐synuclein were measured in 61 AD patients, 32 DLB patients, and 40 normal controls using commercial ELISA kits. The results showed that the CSF VILIP‐1 level had significantly increased in AD patients compared with both normal controls and DLB patients. The CSF VILIP‐1 and VILIP‐1/Aβ1–42 levels had enough diagnostic accuracy to allow the detection and differential diagnosis of AD. Additionally, CSF VILIP‐1 levels were positively correlated with t‐tau and p‐tau181P within each group and with α‐synuclein in the AD and control groups. We conclude that CSF VILIP‐1 could be a diagnostic marker for AD, differentiating it from DLB. The analysis of biomarkers, representing different neuropathologies, is an important approach reflecting the heterogeneous features of AD and DLB.

  相似文献   


19.
Vitamin C is an essential factor for neuronal function and survival, existing in two redox states, ascorbic acid (AA), and its oxidized form, dehydroascorbic acid (DHA). Here, we show uptake of both AA and DHA by primary cultures of rat brain cortical neurons. Moreover, we show that most intracellular AA was rapidly oxidized to DHA. Intracellular DHA induced a rapid and dramatic decrease in reduced glutathione that was immediately followed by a spontaneous recovery. This transient decrease in glutathione oxidation was preceded by an increase in the rate of glucose oxidation through the pentose phosphate pathway (PPP), and a concomitant decrease in glucose oxidation through glycolysis. DHA stimulated the activity of glucose‐6‐phosphate dehydrogenase, the rate‐limiting enzyme of the PPP. Furthermore, we found that DHA stimulated the rate of lactate uptake by neurons in a time‐ and dose‐dependent manner. Thus, DHA is a novel modulator of neuronal energy metabolism by facilitating the utilization of glucose through the PPP for antioxidant purposes.

  相似文献   


20.
The E3 ubiquitin ligase Parkin plays a central role in the pathogenesis of many neurodegenerative diseases. Parkin promotes specific ubiquitination and affects the localization of transactivation response DNA‐binding protein 43 (TDP‐43), which controls the translation of thousands of mRNAs. Here we tested the effects of lentiviral Parkin and TDP‐43 expression on amino acid metabolism in the rat motor cortex using high frequency 13C NMR spectroscopy. TDP‐43 expression increased glutamate levels, decreased the levels of other amino acids, including glutamine, aspartate, leucine and isoleucine, and impaired mitochondrial tricarboxylic acid cycle. TDP‐43 induced lactate accumulation and altered the balance between excitatory (glutamate) and inhibitory (GABA) neurotransmitters. Parkin restored amino acid levels, neurotransmitter balance and tricarboxylic acid cycle metabolism, rescuing neurons from TDP‐43‐induced apoptotic death. Furthermore, TDP‐43 expression led to an increase in 4E‐BP levels, perhaps altering translational control and deregulating amino acid synthesis; while Parkin reversed the effects of TDP‐43 on the 4E‐BP signaling pathway. Taken together, these data suggest that Parkin may affect TDP‐43 localization and mitigate its effects on 4E‐BP signaling and loss of amino acid homeostasis.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号