首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
The 19‐transmembrane, multisubunit γ‐secretase complex generates the amyloid β‐peptide (Aβ) of Alzheimer's disease (AD) by an unusual intramembrane proteolysis of the β‐amyloid precursor protein. The complex, which similarly processes many other type 1 transmembrane substrates, is composed of presenilin, Aph1, nicastrin, and presenilin enhancer (Pen‐2), all of which are necessary for proper complex maturation and enzymatic activity. Obtaining a high‐resolution atomic structure of the intact complex would greatly aid the rational design of compounds to modulate activity but is a very difficult task. A complementary method is to generate structures for each individual subunit to allow one to build a model of the entire complex. Here, we describe a method by which recombinant human Pen‐2 can be purified from bacteria to > 95% purity at milligram quantities per liter, utilizing a maltose binding protein tag to both increase solubility and facilitate purification. Expressing the same construct in mammalian cells, we show that the large N‐terminal maltose binding protein tag on Pen‐2 still permits incorporation into the complex and subsequent presenilin‐1 endoproteolysis, nicastrin glycosylation and proteolytic activity. These new methods provide valuable tools to study the structure and function of Pen‐2 and the γ‐secretase complex.

  相似文献   


2.
γ‐secretase is a protease complex with at least four components: presenilin, nicastrin (NCT), anterior pharynx‐defective 1 (Aph‐1), and presenilin enhancer 2 (Pen‐2). In this study, using knockout cell lines and small interfering RNA technology, our data demonstrated that the disappeared presenilin 1 C‐terminal fragment (PS1C) caused by knockdown of pen‐2 or knockout of NCT or Aph‐1 was recovered by the addition of proteasome inhibitors, indicating that Pen‐2, as well as NCT and Aph‐1α, is dispensable for presenilin endoproteolysis. Our data also demonstrate that the formation of the nicastrin‐Aph‐1 subcomplex plays not only an important role in γ‐secretase complex assembly but also in recruiting substrate C‐terminal fragment of amyloid precursor protein generated by β‐cleavage. Ablating any one component resulted in the instability of other components of the γ‐secretase complex, and the presence of all three of the other components is required for full maturation of NCT.  相似文献   

3.
The molecular mechanisms governing γ‐secretase cleavage specificity are not fully understood. Herein, we demonstrate that extending the transmembrane domain of the amyloid precursor protein‐derived C99 substrate in proximity to the cytosolic face strongly influences γ–secretase cleavage specificity. Sequential insertion of leucines or replacement of membrane‐anchoring lysines by leucines elevated the production of Aβ42, whilst lowering production of Aβ40. A single insertion or replacement was sufficient to produce this phenotype, suggesting that the helical length distal to the ε–site is a critical determinant of γ‐secretase cleavage specificity. Replacing the lysine at the luminal membrane border (K28) with glutamic acid (K28E) increased Aβ37 and reduced Aβ42 production. Maintaining a positive charge with an arginine replacement, however, did not alter cleavage specificity. Using two potent and structurally distinct γ–secretase modulators (GSMs), we elucidated the contribution of K28 to the modulatory mechanism. Surprisingly, whilst lowering the potency of the non‐steroidal anti‐inflammatory drug‐type GSM, the K28E mutation converted a heteroaryl‐type GSM to an inverse GSM. This result implies the proximal lysine is critical for the GSM mechanism and pharmacology. This region is likely a major determinant for substrate binding and we speculate that modulation of substrate binding is the fundamental mechanism by which GSMs exert their action.  相似文献   

4.
Expression of a familial Alzheimer's disease (AD)‐linked mutant of amyloid β precursor protein (APP) or the binding of transforming growth factor β2 to wild‐type (wt)‐APP causes neuronal death by activating an intracellular death signal (a APP‐mediated intracellular death signal) in the absence of the involvement of amyloid β (Aβ) toxicity in vitro. These neuronal death models may therefore be regarded as Aβ‐independent neuronal death models related to AD. A recent study has shown that the A673T mutation in the APP isoform APP770, corresponding to the A598T mutation in the most prevalent neuronal APP isoform APP695 (an AD‐protective mutant of APP), is linked to a reduction in the incidence rate of AD. Consistent with this, cells expressing the AD‐protective mutant of APP produce less Aβ than cells expressing wt‐APP. In this study, transforming growth factor β2 caused death in cultured neuronal cells expressing wt‐APP, but not in those expressing the AD‐protective mutant of APP. This result suggests that the AD‐protective mutation of APP reduces the incidence rate of AD by attenuating the APP‐mediated intracellular death signal. In addition, a mutation that causes hereditary cerebral hemorrhage with amyloidosis‐Dutch type also attenuated the APP‐mediated intracellular death signal.

  相似文献   


5.
The two presenilin‐1 (PS1) and presenilin‐2 (PS2) homologs are the catalytic core of the γ‐secretase complex, which has a major role in cell fate decision and Alzheimer's disease (AD) progression. Understanding the precise contribution of PS1‐ and PS2‐dependent γ‐secretases to the production of β‐amyloid peptide (Aβ) from amyloid precursor protein (APP) remains an important challenge to design molecules efficiently modulating Aβ release without affecting the processing of other γ‐secretase substrates. To that end, we studied PS1‐ and PS2‐dependent substrate processing in murine cells lacking presenilins (PSs) (PS1KO, PS2KO or PS1‐PS2 double‐KO noted PSdKO) or stably re‐expressing human PS1 or PS2 in an endogenous PS‐null (PSdKO) background. We characterized the processing of APP and Notch on both endogenous and exogenous substrates, and we investigated the effect of pharmacological inhibitors targeting the PSs activity (DAPT and L‐685,458). We found that murine PS1 γ‐secretase plays a predominant role in APP and Notch processing when compared to murine PS2 γ‐secretase. The inhibitors blocked more efficiently murine PS2‐ than murine PS1‐dependent processing. Human PSs, especially human PS1, expression in a PS‐null background efficiently restored APP and Notch processing. Strikingly, and contrary to the results obtained on murine PSs, pharmacological inhibitors appear to preferentially target human PS1‐ than human PS2‐dependent γ‐secretase activity.  相似文献   

6.
An important pathological hallmark of Alzheimer's disease (AD) is the deposition of amyloid‐beta (Aβ) peptides in the brain parenchyma, leading to neuronal death and impaired learning and memory. The protease γ‐secretase is responsible for the intramembrane proteolysis of the amyloid‐β precursor protein (APP), which leads to the production of the toxic Aβ peptides. Thus, an attractive therapeutic strategy to treat AD is the modulation of the γ‐secretase activity, to reduce Aβ42 production. Because phosphorylation of proteins is a post‐translational modification known to modulate the activity of many different enzymes, we used electrospray (LC‐MS/MS) mass spectrometry to identify new phosphosites on highly purified human γ‐secretase. We identified 11 new single or double phosphosites in two well‐defined domains of Presenilin‐1 (PS1), the catalytic subunit of the γ‐secretase complex. Next, mutagenesis and biochemical approaches were used to investigate the role of each phosphosite in the maturation and activity of γ‐secretase. Together, our results suggest that the newly identified phosphorylation sites in PS1 do not modulate γ‐secretase activity and the production of the Alzheimer's Aβ peptides. Individual PS1 phosphosites shall probably not be considered therapeutic targets for reducing cerebral Aβ plaque formation in AD.

  相似文献   


7.
The four‐subunit protease complex γ‐secretase cleaves many single‐pass transmembrane (TM) substrates, including Notch and β‐amyloid precursor protein to generate amyloid‐β (Aβ), central to Alzheimer's disease. Two of the subunits anterior pharynx‐defective 1 (APH‐1) and presenilin (PS) exist in two homologous forms APH1‐A and APH1‐B, and PS1 and PS2. The consequences of these variations are poorly understood and could affect Aβ production and γ‐secretase medicine. Here, we developed the first complete structural model of the APH‐1B subunit using the published cryo‐electron microscopy (cryo‐EM) structures of APH1‐A (Protein Data Bank: 5FN2, 5A63, and 6IYC). We then performed all‐atom molecular dynamics simulations at 303 K in a realistic bilayer system to understand both APH‐1B alone and in γ‐secretase without and with substrate C83‐bound. We show that APH‐1B adopts a 7TM topology with a water channel topology similar to APH‐1A. We demonstrate direct transport of water through this channel, mainly via Glu84, Arg87, His170, and His196. The apo and holo states closely resemble the experimental cryo‐EM structures with APH‐1A, however with subtle differences: The substrate‐bound APH‐1B γ‐secretase was quite stable, but some TM helices of PS1 and APH‐1B rearranged in the membrane consistent with the disorder seen in the cryo‐EM data. This produces different accessibility of water molecules for the catalytic aspartates of PS1, critical for Aβ production. In particular, we find that the typical distance between the catalytic aspartates of PS1 and the C83 cleavage sites are shorter in APH‐1B, that is, it represents a more closed state, due to interactions with the C‐terminal fragment of PS1. Our structural‐dynamic model of APH‐1B alone and in γ‐secretase suggests generally similar topology but some notable differences in water accessibility which may be relevant to the protein's existence in two forms and their specific function and location.  相似文献   

8.
Autosomal‐dominant Alzheimer's disease (ADAD) is a genetic disorder caused by mutations in Amyloid Precursor Protein (APP) or Presenilin (PSEN) genes. Studying the mechanisms underlying these mutations can provide insight into the pathways that lead to AD pathology. The majority of biochemical studies on APP mutations to‐date have focused on comparing mechanisms between mutations at different codons. It has been assumed that amino acid position is a major determinant of protein dysfunction and clinical phenotype. However, the differential effect of mutations at the same codon has not been sufficiently addressed. In the present study we compared the effects of the aggressive ADAD‐associated APP I716F mutation with I716V and I716T on APP processing in human neuroglioma and CHO‐K1 cells. All APP I716 mutations increased the ratio of Aβ42/40 and changed the product line preference of γ‐secretase towards Aβ38 production. In addition, the APP I716F mutation impaired the ε‐cleavage and the fourth cleavage of γ‐secretase and led to abnormal APP β‐CTF accumulation at the plasma membrane. Taken together, these data indicate that APP mutations at the same codon can induce diverse abnormalities in APP processing, some resembling PSEN1 mutations. These differential effects could explain the clinical differences observed among ADAD patients bearing different APP mutations at the same position.

  相似文献   


9.
The biological underpinnings linking stress to Alzheimer's disease (AD) risk are poorly understood. We investigated how corticotrophin releasing factor (CRF), a critical stress response mediator, influences amyloid‐β (Aβ) production. In cells, CRF treatment increases Aβ production and triggers CRF receptor 1 (CRFR1) and γ‐secretase internalization. Co‐immunoprecipitation studies establish that γ‐secretase associates with CRFR1; this is mediated by β‐arrestin binding motifs. Additionally, CRFR1 and γ‐secretase co‐localize in lipid raft fractions, with increased γ‐secretase accumulation upon CRF treatment. CRF treatment also increases γ‐secretase activity in vitro, revealing a second, receptor‐independent mechanism of action. CRF is the first endogenous neuropeptide that can be shown to directly modulate γ‐secretase activity. Unexpectedly, CRFR1 antagonists also increased Aβ. These data collectively link CRF to increased Aβ through γ‐secretase and provide mechanistic insight into how stress may increase AD risk. They also suggest that direct targeting of CRF might be necessary to effectively modulate this pathway for therapeutic benefit in AD, as CRFR1 antagonists increase Aβ and in some cases preferentially increase Aβ42 via complex effects on γ‐secretase.  相似文献   

10.
11.
The high‐affinity choline transporter (CHT) is responsible for choline uptake into cholinergic neurons, with this being the rate‐limiting step for acetylcholine production. Altering CHT protein disposition directly impacts choline uptake activity and cholinergic neurotransmission. Amyloid precursor protein (APP) interacts with CHT proteins and increases their endocytosis from the cell surface. The goal of this study was to examine regulation of CHT trafficking and activity by wild‐type APP (APPwt) and determine if this differs with Swedish mutant APP (APPSwe) in SH‐SY5Y human neuroblastoma cells. APPSwe differs from APPwt in its trafficking from the cell surface through endosomes. We report for the first time that CHT interacts significantly less with APPSwe than with APPwt. Surprisingly, however, CHT cell surface levels and choline uptake activity are decreased to the same extent and CHT co‐localization to early endosomes increased similarly in cells expressing either APPwt or APPSwe. A critical observation is that CHT co‐immunoprecipitates with βCTF from APPSwe‐expressing cells. We propose that decreased CHT function is mediated differently by APPwt and APPSwe; APPwt interaction with CHT facilitates its endocytosis from the cell surface, whereas the effect of APPSwe on CHT is mediated indirectly potentially by binding to the βCTF fragment or by Aβ released from cells.

  相似文献   


12.
13.
14.
15.
16.
17.
Mitochondria are physically and biochemically in contact with other organelles including the endoplasmic reticulum (ER). Such contacts are formed between mitochondria‐associated ER membranes (MAM), specialized subregions of ER, and the outer mitochondrial membrane (OMM). We have previously shown increased expression of MAM‐associated proteins and enhanced ER to mitochondria Ca2+ transfer from ER to mitochondria in Alzheimer's disease (AD) and amyloid β‐peptide (Aβ)‐related neuronal models. Here, we report that siRNA knockdown of mitofusin‐2 (Mfn2), a protein that is involved in the tethering of ER and mitochondria, leads to increased contact between the two organelles. Cells depleted in Mfn2 showed increased Ca2+ transfer from ER to mitchondria and longer stretches of ER forming contacts with OMM. Interestingly, increased contact resulted in decreased concentrations of intra‐ and extracellular Aβ40 and Aβ42. Analysis of γ‐secretase protein expression, maturation and activity revealed that the low Aβ concentrations were a result of impaired γ‐secretase complex function. Amyloid‐β precursor protein (APP), β‐site APP‐cleaving enzyme 1 and neprilysin expression as well as neprilysin activity were not affected by Mfn2 siRNA treatment. In summary, our data shows that modulation of ER–mitochondria contact affects γ‐secretase activity and Aβ generation. Increased ER–mitochondria contact results in lower γ‐secretase activity suggesting a new mechanism by which Aβ generation can be controlled.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号