首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
2.
Amyloid beta (Aβ) protein is the primary proteinaceous deposit found in the brains of patients with Alzheimer's disease (AD). Evidence suggests that Aβ plays a central role in the development of AD pathology. Here, we show in PC12 cells, Aβ impairs tropomyosin receptor kinase A (TrkA) ubiquitination, phosphorylation, and its association with p75NTR, p62, and TRAF6 induced by nerve growth factor. The ubiquitination and tyrosine phosphorylation of TrkA was also found to be impaired in postmortem human AD hippocampus compared to control. Interestingly, the nitrotyrosylation of TrkA was increased in AD hippocampus and this explains why the phosphotyrosylation and ubiquitination of TrkA was impaired. In AD brain, the production of matrix metalloproteinase‐7 (MMP‐7), which cleaves proNGF, was reduced, thereby leading to the accumulation of pro‐NGF and a decrease in the level of active NGF. TrkA signaling events, including Ras/MAPK and phosphatidylinositol 3‐kinase (PI3K)/Akt pathways, are deactivated with Aβ and in the human AD hippocampus. Findings show that Aβ blocks the TrkA ubiquitination and downstream signaling similar to AD hippocampus.

  相似文献   


3.
4.
5.
In this study, in vitro and in vivo experiments were carried out with the high‐affinity multifunctional D2/D3 agonist D‐512 to explore its potential neuroprotective effects in models of Parkinson's disease and the potential mechanism(s) underlying such properties. Pre‐treatment with D‐512 in vitro was found to rescue rat adrenal Pheochromocytoma PC12 cells from toxicity induced by 6‐hydroxydopamine administration in a dose‐dependent manner. Neuroprotection was found to coincide with reductions in intracellular reactive oxygen species, lipid peroxidation, and DNA damage. In vivo, pre‐treatment with 0.5 mg/kg D‐512 was protective against neurodegenerative phenotypes associated with systemic administration of MPTP, including losses in striatal dopamine, reductions in numbers of DAergic neurons in the substantia nigra (SN), and locomotor dysfunction. These observations strongly suggest that the multifunctional drug D‐512 may constitute a novel viable therapy for Parkinson's disease.

  相似文献   


6.
Nitric oxide (NO) plays an important role in phase‐shifting of circadian neuronal activities in the suprachiasmatic nucleus and circadian behavior activity rhythms. In the retina, NO production is increased in a light‐dependent manner. While endogenous circadian oscillators in retinal photoreceptors regulate their physiological states, it is not clear whether NO also participates in the circadian regulation of photoreceptors. In this study, we demonstrate that NO is involved in the circadian phase‐dependent regulation of L‐type voltage‐gated calcium channels (L‐VGCCs). In chick cone photoreceptors, the L‐VGCCα1 subunit expression and the maximal L‐VGCC currents are higher at night, and both Ras‐mitogen‐activated protein kinase (MAPK)‐extracellular signal‐regulated kinase (Erk) and Ras‐phosphatidylinositol 3 kinase (PI3K)‐protein kinase B (Akt) are part of the circadian output pathways regulating L‐VGCCs. The NO‐cGMP‐protein kinase G (PKG) pathway decreases L‐VGCCα1 subunit expression and L‐VGCC currents at night, but not during the day, and exogenous NO donor or cGMP decreases the phosphorylation of Erk and Akt at night. The protein expression of neural NO synthase (nNOS) is also under circadian control, with both nNOS and NO production being higher during the day. Taken together, NO/cGMP/PKG signaling is involved as part of the circadian output pathway to regulate L‐VGCCs in cone photoreceptors.

  相似文献   


7.
Brain damage after insult and cognitive decline are related to excitotoxicity and strongly influenced by aging, yet mechanisms of aging‐dependent susceptibility to excitotoxicity are poorly known. Several non‐steroidal anti‐inflammatory drugs (NSAIDs) may prevent excitotoxicity and cognitive decline in the elderly by an unknown mechanism. Interestingly, after several weeks in vitro, hippocampal neurons display important hallmarks of neuronal aging in vivo. Accordingly, rat hippocampal neurons cultured for several weeks were used to investigate mechanisms of aging‐related susceptibility to excitotoxicity and neuroprotection by NSAIDs. We found that NMDA increased cytosolic Ca2+ concentration in young, mature and aged neurons but only promoted apoptosis in aged neurons. Resting Ca2+ levels and responses to NMDA increased with time in culture which correlated with changes in expression of NMDA receptor subunits. In addition, NMDA promoted mitochondrial Ca2+ uptake only in aged cultures. Consistently, specific inhibition of mitochondrial Ca2+ uptake decreased apoptosis. Finally, we found that a series of NSAIDs depolarized mitochondria and inhibited mitochondrial Ca2+ overload, thus preventing NMDA‐induced apoptosis in aged cultures. We conclude that mitochondrial Ca2+ uptake is critical for age‐related susceptibility to excitotoxicity and neuroprotection by NSAIDs.

  相似文献   


8.
The receptor for advanced glycation end products (RAGE) gene expresses two major alternative splicing isoforms, full‐length membrane‐bound RAGE (mRAGE) and secretory RAGE (esRAGE). Both isoforms play important roles in Alzheimer's disease (AD) pathogenesis, either via interaction of mRAGE with β‐amyloid peptide (Aβ) or inhibition of the mRAGE‐activated signaling pathway. In the present study, we showed that heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) and Transformer2β‐1 (Tra2β‐1) were involved in the alternative splicing of mRAGE and esRAGE. Functionally, two factors had an antagonistic effect on the regulation. Glucose deprivation induced an increased ratio of mRAGE/esRAGE via up‐regulation of hnRNP A1 and down‐regulation of Tra2β‐1. Moreover, the ratios of mRAGE/esRAGE and hnRNP A1/Tra2β‐1 were increased in peripheral blood mononuclear cells from AD patients. The results provide a molecular basis for altered splicing of mRAGE and esRAGE in AD pathogenesis.

  相似文献   


9.
10.
Toll‐like receptor 4 (TLR4) activation and signalling in glial cells play critical roles in neurological disorders and in alcohol‐induced brain damage. TLR4 endocytosis upon lipopolysaccharide (LPS) stimulation regulates which signalling pathway is activated, the MyD88‐dependent or the TIR‐domain‐containing adapter‐inducing interferon‐β (TRIF)‐dependent pathway. However, it remains elusive whether ethanol‐induced TLR4 signalling is associated with receptor internalization and trafficking, and which endocytic pathway(s) are used in cortical astrocytes. Using the adenoviral over‐expression of TLR4GFP, confocal microscopy and the imagestream technique, we show that upon ethanol or LPS stimulation, TLR4 co‐localizes with markers of the clathrin and caveolin endocytic pathways, and that this endocytosis is dependent on dynamin. Using chlorpromazin and filipin as inhibitors of the clathrin and rafts/caveolae endocytic pathways, respectively, we demostrate that TRIF‐dependent signalling relies on an intact clathrin pathway, whereas disruption of rafts/caveolae inhibits the MyD88‐ and TRIF‐dependent signalling pathways. Immunofluorescence studies also suggest that lipid rafts and clathrin cooperate for appropriate TLR4 internalization. We also show that ethanol can trigger similar endocytic pathways as LPS does, although ethanol delays clathrin internalization and alters TLR4 vesicular trafficking. Our results provide new insights into the effects of ethanol or LPS on TLR4 signalling in cortical astrocytes, events that may underlie neuroinflammation and brain damage.

  相似文献   


11.
Metabotropic glutamate receptor 5 (mGluR5) regulates excitatory post‐synaptic signaling in the central nervous system (CNS) and is implicated in various CNS disorders. Protein kinase A (PKA) signaling is known to play a critical role in neuropsychiatric disorders such as Parkinson's disease, schizophrenia, and addiction. Dopamine signaling is known to modulate the properties of mGluR5 in a cAMP‐ and PKA‐dependent manner, suggesting that mGluR5 may be a direct target for PKA. Our study identifies mGluR5 at Ser870 as a direct substrate for PKA phosphorylation and demonstrates that this phosphorylation plays a critical role in the PKA‐mediated modulation of mGluR5 functions such as extracellular signal‐regulated kinase phosphorylation and intracellular Ca2+ oscillations. The identification of the molecular mechanism by which PKA signaling modulates mGluR5‐mediated cellular responses contributes to the understanding of the interaction between dopaminergic and glutamatergic neuronal signaling.

  相似文献   


12.
13.
The neuronal endocannabinoid system is known to depress synaptic inputs retrogradely in an activity‐dependent manner. This mechanism has been generally described for excitatory glutamatergic and inhibitory GABAergic synapses. Here, we report that neurones in the auditory brainstem of the Mongolian gerbil (Meriones unguiculatus) retrogradely regulate the strength of their inputs via the endocannabinoid system. By means of whole‐cell patch‐clamp recordings, we found that retrograde endocannabinoid signalling attenuates both glycinergic and glutamatergic post‐synaptic currents in the same types of neurones. Accordingly, we detected the cannabinoid receptor 1 in excitatory and inhibitory pre‐synapses as well as the endocannabinoid‐synthesising enzymes (diacylglycerol lipase α/β, DAGLα/β) post‐synaptically through immunohistochemical stainings. Our study was performed with animals aged 10–15 days, that is, in the time window around the onset of hearing. Therefore, we suggest that retrograde endocannabinoid signalling has a role in adapting inputs during the functionally important switch from spontaneously generated to sound‐related signals.

  相似文献   


14.
Drebrin an actin‐bundling key regulator of dendritic spine genesis and morphology, has been recently proposed as a regulator of hippocampal glutamatergic activity which is critical for memory formation and maintenance. Here, we examined the effects of genetic deletion of drebrin on dendritic spine and on the level of complexes containing major brain receptors. To this end, homozygous and heterozygous drebrin knockout mice generated in our laboratory and related wild‐type control animals were studied. Level of protein complexes containing dopamine receptor D1/dopamine receptor D2, 5‐hydroxytryptamine receptor 1A (5‐HT1AR), and 5‐hydroxytryptamine receptor 7 (5‐HT7R) were significantly reduced in hippocampus of drebrin knockout mice whereas no significant changes were detected for GluR1, 2, and 3 and NR1 as examined by native gel‐based immunoblotting. Drebrin depletion also altered dendritic spine formation, morphology, and reduced levels of dopamine receptor D1 in dendritic spines as evaluated using immunohistochemistry/confocal microscopy. Electrophysiological studies further showed significant reduction in memory‐related hippocampal synaptic plasticity upon drebrin depletion. These findings provide unprecedented experimental support for a role of drebrin in the regulation of memory‐related synaptic plasticity and neurotransmitter receptor signaling, offer relevant information regarding the interpretation of previous studies and help in the design of future studies on dendritic spines.

  相似文献   


15.
The molecular mechanisms of iron trafficking in neurons have not been elucidated. In this study, we characterized the expression and localization of ferrous iron transporters Zip8, Zip14 and divalent metal transporter 1 (DMT1), and ferrireductases Steap2 and stromal cell‐derived receptor 2 in primary rat hippocampal neurons. Steap2 and Zip8 partially co‐localize, indicating these two proteins may function in Fe3+ reduction prior to Fe2+ permeation. Zip8, DMT1, and Steap2 co‐localize with the transferrin receptor/transferrin complex, suggesting they may be involved in transferrin receptor/transferrin‐mediated iron assimilation. In brain interstitial fluid, transferring‐bound iron (TBI) and non‐transferrin‐bound iron (NTBI) exist as potential iron sources. Primary hippocampal neurons exhibit significant iron uptake from TBI (Transferrin‐59Fe3+) and NTBI, whether presented as 59Fe2+‐citrate or 59Fe3+‐citrate; reductase‐independent 59Fe2+ uptake was the most efficient uptake pathway of the three. Kinetic analysis of Zn2+ inhibition of Fe2+ uptake indicated that DMT1 plays only a minor role in the uptake of NTBI. In contrast, localization and knockdown data indicate that Zip8 makes a major contribution. Data suggest also that cell accumulation of 59Fe from TBI relies at least in part on an endocytosis‐independent pathway. These data suggest that Zip8 and Steap2 play a major role in iron accumulation from NTBI and TBI by hippocampal neurons.

  相似文献   


16.
Cannabinoid Receptor 1 (CB1) has been initially described as the receptor for Delta‐9‐Tetrahydrocannabinol in the central nervous system (CNS), mediating retrograde synaptic signaling of the endocannabinoid system. Beside its expression in various CNS regions, CB1 is ubiquituous in peripheral tissues, where it mediates, among other activities, the cell's energy homeostasis. We sought to examine the role of CB1 in the context of the evolutionarily conserved autophagic machinery, a main constituent of the regulation of the intracellular energy status. Manipulating CB1 by siRNA knockdown in mammalian cells caused an elevated autophagic flux, while the expression of autophagy‐related genes remained unaltered. Pharmacological inhibition of CB1 activity using Rimonabant likewise caused an elevated autophagic flux, which was independent of the mammalian target of rapamycin complex 1, a major switch in the control of canonical autophagy. In addition, knocking down coiled‐coil myosin‐like BCL2‐interacting protein 1, the key‐protein of the second canonical autophagy control complex, was insufficient to reduce the elevated autophagic flux induced by Rimonabant. Interestingly, lysosomal activity is not altered, suggesting a specific effect of CB1 on the regulation of autophagic flux. We conclude that CB1 activity affects the autophagic flux independently of the two major canonic regulation complexes controlling autophagic vesicle formation.

  相似文献   


17.
Endocytosis in synapses sustains neurotransmission by recycling vesicle membrane and maintaining the homeostasis of synaptic membrane. A role of membrane cholesterol in synaptic endocytosis remains controversial because of conflicting observations, technical limitations in previous studies, and potential interference from non‐specific effects after cholesterol manipulation. Furthermore, it remains unclear whether cholesterol participates in distinct forms of endocytosis that function under different activity levels. In this study, applying the whole‐cell membrane capacitance measurement to monitor endocytosis in real time at the rat calyx of Held terminals, we found that disrupting cholesterol with dialysis of cholesterol oxidase or methyl‐β‐cyclodextrin impaired three different forms of endocytosis, including slow endocytosis, rapid endocytosis, and endocytosis of the retrievable membrane that exists at the surface before stimulation. The effects were observed when disruption of cholesterol was mild enough not to change Ca2+ channel current or vesicle exocytosis, indicative of stringent cholesterol requirement in synaptic endocytosis. Extracting cholesterol with high concentrations of methyl‐β‐cyclodextrin reduced exocytosis, mainly by decreasing the readily releasable pool and the vesicle replenishment after readily releasable pool depletion. Our study suggests that cholesterol is an important, universal regulator in multiple forms of vesicle endocytosis at mammalian central synapses.

  相似文献   


18.
As our understanding of motor circuit function increases, our need to understand how circuits form to ensure proper function becomes increasingly important. Recently, deleted in colorectal cancer (DCC) has been shown to be important in the development of spinal circuits necessary for gait. Importantly, humans with mutation in DCC show mirror movement disorders pointing to the significance of DCC in the development of spinal circuits for coordinated movement. Although DCC binds a number of ligands, the intracellular signaling cascade leading to the aberrant spinal circuits remains unknown. Here, we show that the non‐catalytic region of tyrosine kinase adaptor (NCK) proteins 1 and 2 are distributed in the developing spinal cord. Using dissociated dorsal spinal neuron cultures we show that NCK proteins are necessary for the outgrowth and growth cone architecture of DCC+ve dorsal spinal neurons. Consistent with a role for NCK in DCC signaling, we show that loss of NCK proteins leads to a reduction in the thickness of TAG1+ve commissural bundles in the floor plate and loss of DCC mRNA in vivo. We suggest that DCC signaling functions through NCK1 and NCK2 and that both proteins are necessary for the establishment of normal spinal circuits necessary for gait.

  相似文献   


19.
Isolating a pure population of neural stem cells (NSCs) has been difficult since no exclusive surface markers have been identified for panning or FACS purification. Moreover, additional refinements for maintaining NSCs in culture are required, since NSCs generate a variety of neural precursors (NPs) as they proliferate. Here, we demonstrate that post‐natal rat NPs express low levels of pro‐apoptotic molecules and resist phosphatidylinositol 3′OH kinase and extracellular regulated kinase 1/2 inhibition as compared to late oligodendrocyte progenitors. Furthermore, maintaining subventricular zone precursors in LY294002 and PD98059, inhibitors of PI3K and ERK1/2 signaling, eliminated lineage‐restricted precursors as revealed by enrichment for Nestin+/SOX‐2+ cells. The cells that survived formed neurospheres and 89% of these neurospheres were tripotential, generating neurons, astrocytes, and oligodendrocytes. Without this enrichment step, less than 50% of the NPs were Nestin+/SOX‐2+ and 42% of the neurospheres were tripotential. In addition, neurospheres enriched using this procedure produced 3‐times more secondary neurospheres, supporting the conclusion that this procedure enriches for NSCs. A number of genes that enhance survival were more highly expressed in neurospheres compared to late oligodendrocyte progenitors. Altogether, these studies demonstrate that primitive neural precursors can be enriched using a relatively simple and inexpensive means that will facilitate cell replacement strategies using stem cells as well as other studies whose goal is to reveal the fundamental properties of primitive neural precursors.

  相似文献   


20.
The sodium‐coupled, hemicholinium‐3‐sensitive, high‐affinity choline transporter (CHT) is responsible for transport of choline into cholinergic nerve terminals from the synaptic cleft following acetylcholine release and hydrolysis. In this study, we address regulation of CHT function by plasma membrane cholesterol. We show for the first time that CHT is concentrated in cholesterol‐rich lipid rafts in both SH‐SY5Y cells and nerve terminals from mouse forebrain. Treatment of SH‐SY5Y cells expressing rat CHT with filipin, methyl‐β‐cyclodextrin (MβC) or cholesterol oxidase significantly decreased choline uptake. In contrast, CHT activity was increased by addition of cholesterol to membranes using cholesterol‐saturated MβC. Kinetic analysis of binding of [3H]hemicholinium‐3 to CHT revealed that reducing membrane cholesterol with MβC decreased both the apparent binding affinity (KD) and maximum number of binding sites (Bmax); this was confirmed by decreased plasma membrane CHT protein in lipid rafts in cell surface protein biotinylation assays. Finally, the loss of cell surface CHT associated with lipid raft disruption was not because of changes in CHT internalization. In summary, we provide evidence that CHT association with cholesterol‐rich rafts is critical for transporter function and localization. Alterations in plasma membrane cholesterol cholinergic nerve terminals could diminish cholinergic transmission by reducing choline availability for acetylcholine synthesis.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号