首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Cholinergic signaling plays an important role in regulating the growth and regeneration of axons in the nervous system. The α7 nicotinic receptor (α7) can drive synaptic development and plasticity in the hippocampus. Here, we show that activation of α7 significantly reduces axon growth in hippocampal neurons by coupling to G protein‐regulated inducer of neurite outgrowth 1 (Gprin1), which targets it to the growth cone. Knockdown of Gprin1 expression using RNAi is found sufficient to abolish the localization and calcium signaling of α7 at the growth cone. In addition, an α7/Gprin1 interaction appears intimately linked to a Gαo, growth‐associated protein 43, and CDC42 cytoskeletal regulatory pathway within the developing axon. These findings demonstrate that α7 regulates axon growth in hippocampal neurons, thereby likely contributing to synaptic formation in the developing brain.

  相似文献   


2.
3.
4.
Cu/Zn‐superoxide dismutase is misfolded in familial and sporadic amyotrophic lateral sclerosis, but it is not clear how this triggers endoplasmic reticulum (ER) stress or other pathogenic processes. Here, we demonstrate that mutant SOD1 (mSOD1) is predominantly found in the cytoplasm in neuronal cells. Furthermore, we show that mSOD1 inhibits secretory protein transport from the ER to Golgi apparatus. ER‐Golgi transport is linked to ER stress, Golgi fragmentation and axonal transport and we also show that inhibition of ER‐Golgi trafficking preceded ER stress, Golgi fragmentation, protein aggregation and apoptosis in cells expressing mSOD1. Restoration of ER‐Golgi transport by over‐expression of coatomer coat protein II subunit Sar1 protected against inclusion formation and apoptosis, thus linking dysfunction in ER‐Golgi transport to cellular pathology. These findings thus link several cellular events in amyotrophic lateral sclerosis into a single mechanism occurring early in mSOD1 expressing cells.

  相似文献   


5.
6.
Reversible post‐translation modifications of proteins are common in all cells and appear to regulate many processes. Nevertheless, the enzyme(s) responsible for the alterations and the significance of the modification are largely unknown. Succinylation of proteins occurs and causes large changes in the structure of proteins; however, the source of the succinyl groups, the targets, and the consequences of these modifications on other proteins remain unknown. These studies focused on succinylation of mitochondrial proteins. The results demonstrate that the α‐ketoglutarate dehydrogenase complex (KGDHC) can serve as a trans‐succinylase that mediates succinylation in an α‐ketoglutarate‐dependent manner. Inhibition of KGDHC reduced succinylation of both cytosolic and mitochondrial proteins in cultured neurons and in a neuronal cell line. Purified KGDHC can succinylate multiple proteins including other enzymes of the tricarboxylic acid cycle leading to modification of their activity. Inhibition of KGDHC also modifies acetylation by modifying the pyruvate dehydrogenase complex. The much greater effectiveness of KGDHC than succinyl‐CoA suggests that the catalysis owing to the E2k succinyltransferase is important. Succinylation appears to be a major signaling system and it can be mediated by KGDHC.

  相似文献   


7.
A growing body of evidence indicates that valproic acid (VPA), a histone deacetylase inhibitor used to treat epilepsy and mood disorders, has histone deacetylase‐related and ‐unrelated neurotoxic activity, the mechanism of which is still poorly understood. We report that VPA induces neuronal cell death through an atypical calpain‐dependent necroptosis pathway that initiates with downstream activation of c‐Jun N‐terminal kinase 1 (JNK1) and increased expression of receptor‐interacting protein 1 (RIP‐1) and is accompanied by cleavage and mitochondrial release/nuclear translocation of apoptosis‐inducing factor, mitochondrial release of Smac/DIABLO, and inhibition of the anti‐apoptotic protein X‐linked inhibitor of apoptosis (XIAP). Coinciding with apoptosis‐inducing factor nuclear translocation, VPA induces phosphorylation of the necroptosis‐associated histone H2A family member H2AX, which is known to contribute to lethal DNA degradation. These signals are inhibited in neuronal cells that express constitutively activated MEK/ERK and/or PI3‐K/Akt survival pathways, allowing them to resist VPA‐induced cell death. The data indicate that VPA has neurotoxic activity and identify a novel calpain‐dependent necroptosis pathway that includes JNK1 activation and RIP‐1 expression.

  相似文献   


8.
Although the aberrant assembly of mutant superoxide dismutase 1 (mSOD1) is implicated in the pathogenesis of familial amyotrophic lateral sclerosis (ALS), the molecular basis of superoxide dismutase 1 (SOD1) oligomerization remains undetermined. We investigated the roles of transglutaminase 2 (TG2), an endogenous cross‐linker in mSOD1‐linked ALS. TG2 interacted preferentially with mSOD1 and promoted its oligomerization in transfected cells. Purified TG2 directly oligomerized recombinant mutant SOD1 and the apo‐form of the wild‐type SOD1 proteins in a calcium‐dependent manner, indicating that misfolded SOD1 is a substrate of TG2. Moreover, the non‐cell‐autonomous effect of extracellular TG2 on the neuroinflammation was suggested, since the TG2‐mediated soluble SOD1 oligomers induced tumor necrosis factor‐α, interleukin‐1β, and nitric oxide in microglial BV2 cells. TG2 was up‐regulated in the spinal cord of pre‐symptomatic G93A SOD1 transgenic mice and in the hypoglossal nuclei of mice suffering nerve ligation. Furthermore, inhibition of spinal TG2 by cystamine significantly delayed the progression and reduced SOD1 oligomers and microglial activation. These results indicate a novel role of TG2 in SOD1 oligomer‐mediated neuroinflammation, as well as in the involvement in the intracellular aggregation of misfolded SOD1 in ALS.

  相似文献   


9.
Mitochondrial glutathione (GSH) is a key endogenous antioxidant and its maintenance is critical for cell survival. Here, we generated stable NSC34 motor neuron‐like cell lines over‐expressing the mitochondrial GSH transporter, the 2‐oxoglutarate carrier (OGC), to further elucidate the importance of mitochondrial GSH transport in determining neuronal resistance to oxidative stress. Two stable OGC cell lines displayed specific increases in mitochondrial GSH content and resistance to oxidative and nitrosative stressors, but not staurosporine. Inhibition of transport through OGC reduced levels of mitochondrial GSH and resensitized the stable cell lines to oxidative stress. The stable OGC cell lines displayed significant up‐regulation of the anti‐apoptotic protein, B cell lymphoma 2 (Bcl‐2). This result was reproduced in parental NSC34 cells by chronic treatment with GSH monoethylester, which specifically increased mitochondrial GSH levels. Knockdown of Bcl‐2 expression decreased mitochondrial GSH and resensitized the stable OGC cells to oxidative stress. Finally, endogenous OGC was co‐immunoprecipitated with Bcl‐2 from rat brain lysates in a GSH‐dependent manner. These data are the first to show that increased mitochondrial GSH transport is sufficient to enhance neuronal resistance to oxidative stress. Moreover, sustained and specific enhancement of mitochondrial GSH leads to increased Bcl‐2 expression, a required mechanism for the maintenance of increased mitochondrial GSH levels.

  相似文献   


10.
Glucose is the main energy substrate for neurons, and ketone bodies are known to be alternative substrates. However, the capacity of ketone bodies to support different neuronal functions is still unknown. Thus, a change in energy substrate from glucose alone to a combination of glucose and β‐hydroxybutyrate might change neuronal function as there is a known coupling between metabolism and neurotransmission. The purpose of this study was to shed light on the effects of the ketone body β‐hydroxybutyrate on glycolysis and neurotransmission in cultured murine glutamatergic neurons. Previous studies have shown an effect of β‐hydroxybutyrate on glucose metabolism, and the present study further specified this by showing attenuation of glycolysis when β‐hydroxybutyrate was present in these neurons. In addition, the NMDA receptor‐induced calcium responses in the neurons were diminished in the presence of β‐hydroxybutyrate, whereas a direct effect of the ketone body on transmitter release was absent. However, the presence of β‐hydroxybutyrate augmented transmitter release induced by the KATP channel blocker glibenclamide, thus giving an indirect indication of the involvement of KATP channels in the effects of ketone bodies on transmitter release.

  相似文献   


11.
Trafficking of G protein‐coupled receptors plays a crucial role in controlling the precise signalling of the receptor as well as its proper regulation. Metabotropic glutamate receptor 1 (mGluR1), a G protein‐coupled receptor, is a member of the group I mGluR family. mGluR1 plays a critical role in neuronal circuit formation and also in multiple types of synaptic plasticity. This receptor has also been reported to be involved in various neuropsychiatric diseases. Other than the central nervous system, mGluR1 plays crucial roles in various non‐neuronal cells like hepatocytes, skin cells, etc. Although it has been reported that mGluR1 gets endocytosed on ligand application, the events after the internalization of the receptor has not been studied. We show here that mGluR1 internalizes on ligand application. Subsequent to endocytosis, majority of the receptors localize at the recycling compartment and no significant presence of the receptor was noticed in the lysosome. Furthermore, mGluR1 returned to the cell membrane subsequent to ligand‐mediated internalization. We also show here that the recycling of mGluR1 is dependent on the activity of protein phosphatase 2A. Thus, our data suggest that the ligand‐mediated internalized receptors recycle back to the cell surface in protein phosphatase 2A‐dependent manner.

  相似文献   


12.
A lesion to the rat rubrospinal tract is a model for traumatic spinal cord lesions and results in atrophy of the red nucleus neurons, axonal dieback, and locomotor deficits. In this study, we used adeno‐associated virus (AAV)‐mediated over‐expression of BAG1 and ROCK2‐shRNA in the red nucleus to trace [by co‐expression of enhanced green fluorescent protein (EGFP)] and treat the rubrospinal tract after unilateral dorsal hemisection. We investigated the effects of targeted gene therapy on neuronal survival, axonal sprouting of the rubrospinal tract, and motor recovery 12 weeks after unilateral dorsal hemisection at Th8 in rats. In addition to the evaluation of BAG1 and ROCK2 as therapeutic targets in spinal cord injury, we aimed to demonstrate the feasibility and the limits of an AAV‐mediated protein over‐expression versus AAV.shRNA‐mediated down‐regulation in this traumatic CNS lesion model. Our results demonstrate that BAG1 and ROCK2‐shRNA both promote neuronal survival of red nucleus neurons and enhance axonal sprouting proximal to the lesion.

  相似文献   


13.
The cell adhesion molecule L1 regulates cellular responses in the developing and adult nervous system. Here, we show that stimulation of cultured mouse cerebellar neurons by a function‐triggering L1 antibody leads to cathepsin E‐mediated generation of a sumoylated 30 kDa L1 fragment (L1‐30) and to import of L1‐30 into the nucleus. Mutation of the sumoylation site at K1172 or the cathepsin E cleavage site at E1167 abolishes generation of L1‐30, while mutation of the nuclear localization signal at K1147 prevents nuclear import of L1‐30. Moreover, the aspartyl protease inhibitor pepstatin impairs the generation of L1‐30 and inhibits L1‐induced migration of cerebellar neurons and Schwann cells as well as L1‐dependent in vitro myelination on axons of dorsal root ganglion neurons by Schwann cells. L1‐stimulated migration of HEK293 cells expressing L1 with mutated cathepsin E cleavage site is diminished in comparison to migration of cells expressing non‐mutated L1. In addition, L1‐stimulated migration of HEK293 cells expressing non‐mutated L1 is also abolished upon knock‐down of cathepsin E expression and enhanced by over‐expression of cathepsin E. The findings of the present study indicate that generation and nuclear import of L1‐30 regulate neuronal and Schwann cell migration as well as myelination.

  相似文献   


14.
Recent studies reveal that cocaine experience results in persistent neuroadaptive changes within glutamate (Glu) synapses in brain areas associated with drug reward. However, it remains unclear whether cocaine affects Glu release in drug‐naive animals and how it is altered by drug experience. Using high‐speed amperometry with enzyme‐based and enzyme‐free biosensors in freely moving rats, we show that an initial intravenous cocaine injection at a low self‐administering dose (1 mg/kg) induces rapid, small and transient Glu release in the nucleus accumbens shell (NAc), which with subsequent injections rapidly becomes a much stronger, two‐component increase. Using cocaine‐methiodide, cocaine's analog that does not cross the blood–brain barrier, we confirm that the initial cocaine‐induced Glu release in the NAc has a peripheral neural origin. Unlike cocaine, Glu responses induced by cocaine‐methiodide rapidly habituate following repeated exposure. However, after cocaine experience this drug induces cocaine‐like Glu responses. Hence, the interoceptive actions of cocaine, which essentially precede its direct actions in the brain, play a critical role in experience‐dependent alterations in Glu release, cocaine‐induced neural sensitization and may contribute to cocaine addiction.

  相似文献   


15.
16.
17.
18.
For our nervous system to function properly, each neuron must generate a single axon and elongate the axon to reach its target. It is known that actin filaments and their dynamic interaction with microtubules within growth cones play important roles in inducing axon extension. However, it remains unclear how cytoskeletal dynamics is controlled in growth cones. In this study, we report that Rufy3, a RUN domain‐containing protein, is a neuron‐specific and actin filament‐relevant protein. We find that the appropriate expression of Rufy3 in mouse hippocampal neurons is required for the development of a single axon and axon growth. Our results show that Rufy3 specifically interacts with actin filament‐binding proteins, such as Fascin, and colocalizes with Fascin in growth cones. Knockdown of Rufy3 impairs the distribution of Fascin and actin filaments, accompanied by an increased proportion of neurons with multiple axons and a decrease in the axon length. Therefore, Rufy3 may be particularly important for neuronal axon elongation by interacting with Fascin to control actin filament organization in axonal growth cones.

  相似文献   


19.
It has been proposed that GM1 ganglioside promotes neuronal growth, phenotypic expression, and survival by modulating tyrosine kinase receptors for neurotrophic factors. Our studies tested the hypothesis that GM1 exerts its neurotrophic action on dopaminergic neurons, in part, by interacting with the GDNF (glia cell‐derived neurotrophic factor) receptor complex, Ret tyrosine kinase and GFRα1 co‐receptor. GM1 addition to striatal slices in situ increased Ret activity in a concentration‐ and time‐dependent manner. GM1‐induced Ret activation required the whole GM1 molecule and was inhibited by the kinase inhibitors PP2 and PP1. Ret activation was followed by Tyr1062 phosphorylation and PI3 kinase/Akt recruitment. The Src kinase was associated with Ret and GM1 enhanced its phosphorylation. GM1 responses required the presence of GFRα1, and there was a GM1 concentration‐dependent increase in the binding of endogenous GDNF which paralleled that of Ret activation. Neutralization of the released GDNF did not influence the Ret response to GM1, and GM1 had no effect on GDNF release. Our in situ studies suggest that GM1 via GFRα1 modulates Ret activation and phosphorylation in the striatum and provide a putative mechanism for its effects on dopaminergic neurons. Indeed, chronic GM1 treatment enhanced Ret activity and phosphorylation in the striatum of the MPTP‐mouse and kinase activation was associated with recovery of dopamine and DOPAC deficits.

  相似文献   


20.
Alzheimer's disease (AD) is a neurodegenerative disorder that represents the most common type of dementia among elderly people. Amyloid beta (Aβ) peptides in extracellular Aβ plaques, produced from the amyloid precursor protein (APP) via sequential processing by β‐ and γ‐secretases, impair hippocampal synaptic plasticity, and cause cognitive dysfunction in AD patients. Here, we report that Aβ peptides also impair another form of synaptic plasticity; cerebellar long‐term depression (LTD). In the cerebellum of commonly used AD mouse model, APPswe/PS1dE9 mice, Aβ plaques were detected from 8 months and profound accumulation of Aβ plaques was observed at 18 months of age. Biochemical analysis revealed relatively high levels of APP protein and Aβ in the cerebellum of APPswe/PS1dE9 mice. At pre‐Aβ accumulation stage, LTD induction, and motor coordination are disturbed. These results indicate that soluble Aβ oligomers disturb LTD induction and cerebellar function in AD mouse model.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号