首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
2.
Increasing evidence indicates that the Eph receptors and their ephrin ligands are involved in the regulation of interactions between neurons and astrocytes. Moreover, astrocytic ephrin‐A3 reverse signaling mediated by EphA4 receptors is necessary for controlling the abundance of glial glutamate transporters. However, the role of ephrin‐A3 reverse signaling in astrocytic function and neuronal death under ischemic conditions remains unclear. In the present study, we found that the EphA4 receptor and its ephrin‐A3 ligand, which were distributed in neurons and astrocytes, respectively, in the hippocampus showed a coincident up‐regulation of protein expression in the early stage of ischemia. Application of clustered EphA4 decreased the expressions of astrocytic glutamate transporters together with astrocytic glutamate uptake capacity through activating ephrin‐A3 reverse signaling. In consequence, neuronal loss was aggravated in the CA1 region of the hippocampus accompanied by impaired hippocampus‐dependent spatial memory when clustered EphA4 treatment was administered prior to transient global ischemia. These findings indicate that EphA4‐mediated ephrin‐A3 reverse signaling is a crucial mechanism for astrocytes to control glial glutamate transporters and prevent glutamate excitotoxicity under pathological conditions.

  相似文献   


3.
Radiotherapy is the major treatment modality for primary and metastatic brain tumors which involves the exposure of brain to ionizing radiation. Ionizing radiation can induce various detrimental pathophysiological effects in the adult brain, and Alzheimer's disease and related neurodegenerative disorders are considered to be late effects of radiation. In this study, we investigated whether ionizing radiation causes changes in tau phosphorylation in cultured primary neurons similar to that in Alzheimer's disease. We demonstrated that exposure to 0.5 or 2 Gy γ rays causes increased phosphorylation of tau protein at several phosphorylation sites in a time‐ and dose‐dependent manner. Consistently, we also found ionizing radiation causes increased activation of GSK3β, c‐Jun N‐terminal kinase and extracellular signal‐regulated kinase before radiation‐induced increase in tau phosphorylation. Specific inhibitors of these kinases almost fully blocked radiation‐induced tau phosphorylation. Our studies further revealed that oxidative stress plays an important role in ionizing radiation‐induced tau phosphorylation, likely through the activation of c‐Jun N‐terminal kinase and extracellular signal‐regulated kinase, but not GSK3β. Overall, our studies suggest that ionizing radiation may cause increased risk for development of Alzheimer's disease by promoting abnormal tau phosphorylation.

  相似文献   


4.
Leptin signaling has received considerable attention in the Alzheimer disease (AD) field. Within the past decade, the peptide hormone has been demonstrated to attenuate tau hyperphosphorylation in neuronal cells and to be modulated by amyloid‐β. Moreover, a role in neuroprotection and neurogenesis within the hippocampus has been shown in animal models. To further characterize the association between leptin signaling and vulnerable regions in AD, we assessed the profile of leptin and the leptin receptor in AD and control patients. We analyzed leptin levels in CSF, and the concentration and localization of leptin and leptin receptor in the hippocampus. Significant elevations in leptin levels in both CSF and hippocampal tissue of AD patients, compared with age‐matched control cases, indicate a physiological up‐regulation of leptin in AD. However, the level of leptin receptor mRNA decreased in AD brain and the leptin receptor protein was localized to neurofibrillary tangles, suggesting a severe discontinuity in the leptin signaling pathway. Collectively, our results suggest that leptin resistance in the hippocampus may play a role in the characteristic changes associated with the disease. These findings are the first to demonstrate such dysregulated leptin‐signaling circuitry and provide novel insights into the possible role of aberrant leptin signaling in AD.

  相似文献   


5.
The gene encoding leucine‐rich repeat kinase 2 (LRRK2) comprises a major risk factor for Parkinson's disease. Recently, it has emerged that LRRK2 plays important roles in the immune system. LRRK2 is induced by interferon‐γ (IFN‐γ) in monocytes, but the signaling pathway is not known. Here, we show that IFN‐γ‐mediated induction of LRRK2 was suppressed by pharmacological inhibition and RNA interference of the extracellular signal‐regulated kinase 5 (ERK5). This was confirmed by LRRK2 immunostaining, which also revealed that the morphological responses to IFN‐γ were suppressed by ERK5 inhibitor treatment. Both human acute monocytic leukemia THP‐1 cells and human peripheral blood monocytes stimulated the ERK5‐LRRK2 pathway after differentiation into macrophages. Thus, LRRK2 is induced via a novel, ERK5‐dependent IFN‐γ signal transduction pathway, pointing to new functions of ERK5 and LRRK2 in human macrophages.

  相似文献   


6.
Parkinson's disease is the second most common neurodegenerative disease and its pathogenesis is closely associated with oxidative stress. Deposition of aggregated α‐synuclein (α‐Syn) occurs in familial and sporadic forms of Parkinson's disease. Here, we studied the effect of oligomeric α‐Syn on one of the major markers of oxidative stress, lipid peroxidation, in primary co‐cultures of neurons and astrocytes. We found that oligomeric but not monomeric α‐Syn significantly increases the rate of production of reactive oxygen species, subsequently inducing lipid peroxidation in both neurons and astrocytes. Pre‐incubation of cells with isotope‐reinforced polyunsaturated fatty acids (D‐PUFAs) completely prevented the effect of oligomeric α‐Syn on lipid peroxidation. Inhibition of lipid peroxidation with D‐PUFAs further protected cells from cell death induced by oligomeric α‐Syn. Thus, lipid peroxidation induced by misfolding of α‐Syn may play an important role in the cellular mechanism of neuronal cell loss in Parkinson's disease.

  相似文献   


7.
The main purpose of this study was to evaluate whether donepezil, acetylcholinesterase inhibitor, shown to play a protective role through inhibiting glycogen synthesis kinase‐3β (GSK‐3β) activity, could also exert neuroprotective effects by stimulating protein phosphatase 2A (PP2A) activity in the amyloid‐beta (Aβ)42‐induced neuronal toxicity model of Alzheimer's disease. In Aβ42‐induced toxic conditions, each PP2A and GSK‐3β activity measured at different times showed time‐dependent reverse pattern toward the direction of accelerating neuronal deaths with the passage of time. In addition, donepezil pre‐treatment showed dose‐dependent stepwise increase of neuronal viability and stimulation of PP2A activity. However, such effects on them were significantly reduced through the depletion of PP2A activity with either okadaic acid or PP2Ac siRNA. In spite of blocked PP2A activity in this Aβ42 insult, however, donepezil pretreatment showed additional significant recovering effect on neuronal viability when compared to the value without donepezil. Moreover, donepezil partially recovered its dephosphorylating effect on hyperphosphorylated tau induced by Aβ42. This observation led us to assume that additional mechanisms of donepezil, including its inhibitory effect on GSK‐3β activity and/or the activation role of nicotinic acetylcholine receptors (nAChRs), might be involved. Taken together, our results suggest that the neuroprotective effects of donepezil against Aβ42‐induced neurotoxicity are mediated through activation of PP2A, but its additional mechanisms including regulation of GSK‐3β and nAChRs activity would partially contribute to its effects.

  相似文献   


8.
The cholinergic system is critically involved in the modulation of cognitive functions, including learning and memory. Acetylcholine acts through muscarinic (mAChRs) and nicotinic receptors (nAChRs), which are both abundantly expressed in the hippocampus. Previous evidence indicates that choline, the precursor and degradation product of Acetylcholine, can itself activate nAChRs and thereby affects intrinsic and synaptic neuronal functions. Here, we asked whether the cellular actions of choline directly affect hippocampal network activity. Using mouse hippocampal slices we found that choline efficiently suppresses spontaneously occurring sharp wave–ripple complexes (SPW‐R) and can induce gamma oscillations. In addition, choline reduces synaptic transmission between hippocampal subfields CA3 and CA1. Surprisingly, these effects are mediated by activation of both mAChRs and α7‐containing nAChRs. Most nicotinic effects became only apparent after local, fast application of choline, indicating rapid desensitization kinetics of nAChRs. Effects were still present following block of choline uptake and are, therefore, likely because of direct actions of choline at the respective receptors. Together, choline turns out to be a potent regulator of patterned network activity within the hippocampus. These actions may be of importance for understanding state transitions in normal and pathologically altered neuronal networks.

  相似文献   


9.
10.
Bisphenol‐A (BPA) has the capability of interfering with the effects of estrogens on modulating brain function. The purpose of this study was to investigate the effects of BPA on memory and synaptic modification in the hippocampus of female mice under different levels of cycling estrogen. BPA exposure (40, 400 μg/kg/day) for 8 weeks did not affect spatial memory and passive avoidance task of gonadally intact mice but improved ovariectomy (Ovx)‐induced memory impairment, whereas co‐exposure of BPA with estradiol benzoate (EB) diminished the rescue effect of EB on memory behavior of Ovx mice. The results of morphometric measurement showed that BPA positively modified the synaptic interface structure and increased the synaptic density of CA1 pyramidal cell in the hippocampus of Ovx females, but inhibited the enhancement of EB on synaptic modification and synaptogenesis of Ovx mice. Furthermore, BPA up‐regulated synaptic proteins synapsin I and PSD‐95 and NMDA receptor NR2B but inhibited EB‐induced increase in PSD‐95 and NR2B in the hippocampus of Ovx mice. These results suggest that BPA interfered with normal hormonal regulation in synaptic plasticity and memory of female mice as a potent estrogen mimetic and as a disruptor of estrogen under various concentrations of cycling estrogen.

  相似文献   


11.
The GluN2 subunits that compose NMDA receptors (NMDARs) determine functional and pharmacological properties of the receptor. In the striatum, functions and potential dysfunctions of NMDARs attributed to specific GluN2 subunits have not been clearly elucidated, although NMDARs play critical roles in the interactions between glutamate and dopamine. Through the use of amperometry and field potential recordings in mouse brain slices, we found that NMDARs that contain the GluN2D subunit contribute to NMDA‐induced inhibition of evoked dopamine release and of glutamatergic neurotransmission in the striatum of control mice. Inhibition is likely mediated through increased firing in cholinergic interneurons, which were shown to express GluN2D. Indeed, NMDA‐induced inhibition of both dopamine release and glutamatergic neurotransmission is reduced in the presence of muscarinic receptor antagonists and is mimicked by a muscarinic receptor agonist. We have also examined whether this function of GluN2D‐containing NMDARs is altered in a mouse model of Parkinson's disease. We found that the inhibitory role of GluN2D‐containing NMDARs on glutamatergic neurotransmission is impaired in the 6‐hydroxydopamine lesioned striatum. These results identify a role for GluN2D‐containing NMDARs and adaptive changes in experimental Parkinsonism. GluN2D might constitute an attractive target for the development of novel pharmacological tools for therapeutic intervention in Parkinson's disease.

  相似文献   


12.
The microtubule‐associated protein tau has primarily been associated with axonal location and function; however, recent work shows tau release from neurons and suggests an important role for tau in synaptic plasticity. In our study, we measured synaptic levels of total tau using synaptosomes prepared from cryopreserved human postmortem Alzheimer's disease (AD) and control samples. Flow cytometry data show that a majority of synaptic terminals are highly immunolabeled with the total tau antibody (HT7) in both AD and control samples. Immunoblots of synaptosomal fractions reveal increases in a 20 kDa tau fragment and in tau dimers in AD synapses, and terminal‐specific antibodies show that in many synaptosome samples tau lacks a C‐terminus. Flow cytometry experiments to quantify the extent of C‐terminal truncation reveal that only 15–25% of synaptosomes are positive for intact C‐terminal tau. Potassium‐induced depolarization demonstrates release of tau and tau fragments from pre‐synaptic terminals, with increased release from AD compared to control samples. This study indicates that tau is normally highly localized to synaptic terminals in cortex where it is well‐positioned to affect synaptic plasticity. Tau cleavage may facilitate tau aggregation as well as tau secretion and propagation of tau pathology from the pre‐synaptic compartment in AD.

  相似文献   


13.
14.
15.
16.
17.
By using two structurally unrelated hydrogen sulfide (H2S) donors 5‐(4‐methoxyphenyl) ‐3H‐1, 2‐dithiole‐3‐thione (ADT) and sodium hydrosulfide (NaHS), this study investigated if H2S protected blood–brain barrier (BBB) integrity following middle cerebral artery occlusion (MCAO). ICR mice underwent MCAO and received H2S donors at 3 h after reperfusion. Infarction, neurological scores, brain edema, Evans blue (EB) extravasation, and tight junction protein expression were examined at 48 h after MCAO. We also investigated if ADT protected BBB integrity by suppressing post‐ischemic inflammation‐induced Matrix Metalloproteimase‐9 (MMP9) and Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX). ADT increased blood H2S concentrations, decreased infarction, and improved neurological deficits. Particularly, ADT reduced EB extravasation, brain edema and preserved expression of tight junction proteins in the ischemic brain. NaHS also increased blood H2S levels and reduced EB extravasation following MCAO. Moreover, ADT inhibited expression of pro‐inflammatory markers induced Nitric Oxide Synthase (iNOS) and IL‐1β while enhanced expression of anti‐inflammatory markers arginase 1 and IL‐10 in the ischemic brain. Accordingly, ADT attenuated ischemia‐induced expression and activity of MMP9. Moreover, ADT reduced NOX‐4 mRNA expression, NOX activity, and inhibited nuclear translocation of Nuclear Factor Kappa‐B (NF‐κB) in the ischemic brain. In conclusion, H2S donors protected BBB integrity following experimental stroke possibly by acting through NF‐κB inhibition to suppress neuroinflammation induction of MMP9 and NOX4‐derived free radicals.

  相似文献   


18.
Glycoprotein nonmelanoma protein B (GPNMB, alias osteoactivin), a type I transmembrane glycoprotein, is cleaved by extracellular proteases, resulting in release of an extracellular fragment (ECF). GPNMB is widely expressed by neurons within the CNS, including the hippocampus; however, its function in the brain remains unknown. Here, we investigated the role of GPNMB in memory and learning by using transgenic (Tg) mice over‐expressing GPNMB (Tg mice on a BDF‐1 background) and ECF‐treated mice. In the hippocampus of both wild‐type and Tg mice, GPNMB was highly expressed in neurons and astrocytes. Tg mice exhibited memory improvements in two types of learning tasks but were impaired in a passive‐avoidance test. In Tg mice, the hippocampus displayed increased levels of the α‐amino‐3‐hydroxy‐5‐methylisoxazole‐4‐propionate receptor subunit GluA1. Intracerebroventricular administration of ECF (50 ng) to Institute of Cancer Research (ICR) mice also improved memory in a passive‐avoidance test and increased hippocampal GluA1 levels 24 h after treatment. In Tg mice and ECF (0.25 μg/mL)‐treated hippocampal slices, long‐term potentiation was promoted. These findings suggest that GPNMB may be a novel target for research on higher order brain functions.

  相似文献   


19.
The exact effect of glycine pre‐treatment on brain ischemic tolerance (IT) remains quite controversial. The objective of this study was to investigate the potential effects of glycine on IT. We used rat models of both in vitro ischemia (oxygen and glucose deprivation) and in vivo ischemia (transient middle cerebral artery occlusion). Low doses of glycine (L‐Gly) significantly decreased hippocampal ischemic LTP (i‐LTP), infarct volume, and neurological deficit scores which were administered before ischemia was induced in rats, whereas high doses of glycine exerted deteriorative effects under the same condition. These findings suggested that exogenous glycine may induce IT in a dose‐dependent manner. Furthermore, L‐Gly‐dependent neuronal protection was inversed by L689, a selective NMDAR glycine site antagonist both in vitro (abolished i‐LTP depression) and in vivo (increased infarct size reduction), but not glycine receptor (GlyR) inhibitor strychnine. Importantly, L‐Gly‐induced IT was achieved by NR2A‐dependent cAMP‐response element binding protein phosphorylation. These data imply that glycine pre‐treatment may represent a novel strategy for inducing IT based on synaptic NMDAR‐dependent neuronal transmission.

  相似文献   


20.
Peptidyl‐prolyl cis/trans isomerases (PPIases), a unique family of molecular chaperones, regulate protein folding at proline residues. These residues are abundant within intrinsically disordered proteins, like the microtubule‐associated protein tau. Tau has been shown to become hyperphosphorylated and accumulate as one of the two main pathological hallmarks in Alzheimer's disease, the other being amyloid beta (Aβ). PPIases, including Pin1, FK506‐binding protein (FKBP) 52, FKBP51, and FKBP12, have been shown to interact with and regulate tau biology. This interaction is particularly important given the numerous proline‐directed phosphorylation sites found on tau and the role phosphorylation has been found to play in pathogenesis. This regulation then affects downstream aggregation and oligomerization of tau. However, many PPIases have yet to be explored for their effects on tau biology, despite the high likelihood of interaction based on proline content. Moreover, Pin1, FKBP12, FKBP52, cyclophilin (Cyp) A, CypB, and CypD have been shown to also regulate Aβ production or the toxicity associated with Aβ pathology. Therefore, PPIases directly and indirectly regulate pathogenic protein multimerization in Alzheimer's disease and represent a family rich in targets for modulating the accumulation and toxicity.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号