首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The GluN2 subunits that compose NMDA receptors (NMDARs) determine functional and pharmacological properties of the receptor. In the striatum, functions and potential dysfunctions of NMDARs attributed to specific GluN2 subunits have not been clearly elucidated, although NMDARs play critical roles in the interactions between glutamate and dopamine. Through the use of amperometry and field potential recordings in mouse brain slices, we found that NMDARs that contain the GluN2D subunit contribute to NMDA‐induced inhibition of evoked dopamine release and of glutamatergic neurotransmission in the striatum of control mice. Inhibition is likely mediated through increased firing in cholinergic interneurons, which were shown to express GluN2D. Indeed, NMDA‐induced inhibition of both dopamine release and glutamatergic neurotransmission is reduced in the presence of muscarinic receptor antagonists and is mimicked by a muscarinic receptor agonist. We have also examined whether this function of GluN2D‐containing NMDARs is altered in a mouse model of Parkinson's disease. We found that the inhibitory role of GluN2D‐containing NMDARs on glutamatergic neurotransmission is impaired in the 6‐hydroxydopamine lesioned striatum. These results identify a role for GluN2D‐containing NMDARs and adaptive changes in experimental Parkinsonism. GluN2D might constitute an attractive target for the development of novel pharmacological tools for therapeutic intervention in Parkinson's disease.

  相似文献   


2.
Hydrogen sulfide (H2S) functions as a physiological gas transmitter in both normal and pathophysiological cellular events. H2S is produced from substances by three enzymes: cystathionine β‐synthase (CBS), cystathionine γ‐lyase (CSE), and 3‐mercaptopyruvate sulfurtransferase (MST). In human tissues, these enzymes are involved in tissue‐specific biochemical pathways for H2S production. For example, CBS and cysteine aminotransferase/MST are present in the brain, but CSE is not. Thus, we examined the expression of H2S production‐related enzymes in peripheral nerves. Here, we found that CSE and MST/cysteine aminotransferase, but not CBS, were present in normal peripheral nerves. In addition, injured sciatic nerves in vivo up‐regulated CSE in Schwann cells during Wallerian degeneration (WD); however, CSE was not up‐regulated in peripheral axons. Using an ex vivo sciatic nerve explant culture, we found that the inhibition of H2S production broadly prevented the process of nerve degeneration, including myelin fragmentation, axonal degradation, Schwann cell dedifferentiation, and Schwann cell proliferation in vitro and in vivo. Thus, these results indicate that H2S signaling is essential for Schwann cell responses to peripheral nerve injury.

  相似文献   


3.
The STriatal‐Enriched protein tyrosine Phosphatase 61 (STEP61) inhibits the activity of the tyrosine kinase Fyn and dephosphorylates the GluN2B subunit of the NMDA receptor, whereas the protein kinase A phosphorylation of STEP61 inhibits the activity of the phosphatase (Pharmacol. Rev., 64, 2012 , p. 65). Previously, we found that ethanol activates Fyn in the dorsomedial striatum (DMS) leading to GluN2B phosphorylation, which, in turn, underlies the development of ethanol intake (J. Neurosci., 30, 2010 , p. 10187). Here, we tested the hypothesis that inhibition of STEP61 by ethanol is upstream of Fyn/GluN2B. We show that exposure of mice to ethanol increased STEP61 phosphorylation in the DMS, which was maintained after withdrawal and was not observed in other striatal regions. Specific knockdown of STEP61 in the DMS of mice enhanced ethanol‐mediated Fyn activation and GluN2B phosphorylation, and increased ethanol intake without altering the level of water, saccharine, quinine consumption or spontaneous locomotor activity. Together, our data suggest that blockade of STEP61 activity in response to ethanol is sufficient for the activation of the Fyn/GluN2B pathway in the DMS. Being upstream of Fyn and GluN2B, inactive STEP61 in the DMS primes the induction of ethanol intake.

  相似文献   


4.
5.
Zinc (Zn2+) is believed to play a relevant role in the physiology and pathophysiology of the brain. Hence, Zn2+ homeostasis is critical and involves different classes of molecules, including Zn2+ transporters. The ubiquitous Zn2+ transporter‐1 (ZNT‐1) is a transmembrane protein that pumps cytosolic Zn2+ to the extracellular space, but its function in the central nervous system is not fully understood. Here, we show that ZNT‐1 interacts with GluN2A‐containing NMDA receptors, suggesting a role for this transporter at the excitatory glutamatergic synapse. First, we found that ZNT‐1 is highly expressed at the hippocampal postsynaptic density (PSD) where NMDA receptors are enriched. Two‐hybrid screening, coimmunoprecipitation experiments and clustering assay in COS‐7 cells demonstrated that ZNT‐1 specifically binds the GluN2A subunit of the NMDA receptor. GluN2A deletion mutants and pull‐down assays indicated GluN2A(1390–1464) domain as necessary for the binding to ZNT‐1. Most importantly, ZNT‐1/GluN2A complex was proved to be dynamic, since it was regulated by induction of synaptic plasticity. Finally, modulation of ZNT‐1 expression in hippocampal neurons determined a significant change in dendritic spine morphology, PSD‐95 clusters and GluN2A surface levels, supporting the involvement of ZNT‐1 in the dynamics of excitatory PSD.

  相似文献   


6.
Bisphenol‐A (BPA) has the capability of interfering with the effects of estrogens on modulating brain function. The purpose of this study was to investigate the effects of BPA on memory and synaptic modification in the hippocampus of female mice under different levels of cycling estrogen. BPA exposure (40, 400 μg/kg/day) for 8 weeks did not affect spatial memory and passive avoidance task of gonadally intact mice but improved ovariectomy (Ovx)‐induced memory impairment, whereas co‐exposure of BPA with estradiol benzoate (EB) diminished the rescue effect of EB on memory behavior of Ovx mice. The results of morphometric measurement showed that BPA positively modified the synaptic interface structure and increased the synaptic density of CA1 pyramidal cell in the hippocampus of Ovx females, but inhibited the enhancement of EB on synaptic modification and synaptogenesis of Ovx mice. Furthermore, BPA up‐regulated synaptic proteins synapsin I and PSD‐95 and NMDA receptor NR2B but inhibited EB‐induced increase in PSD‐95 and NR2B in the hippocampus of Ovx mice. These results suggest that BPA interfered with normal hormonal regulation in synaptic plasticity and memory of female mice as a potent estrogen mimetic and as a disruptor of estrogen under various concentrations of cycling estrogen.

  相似文献   


7.
Hydrogen sulfide (H2S) is a gaseous neuromodulator produced from L‐cysteine. H2S is generated by three distinct enzymatic pathways mediated by cystathionine γ‐lyase (CSE), cystathionine β‐synthase (CBS), and mercaptopyruvate sulfurtransferase (MPST) coupled with cysteine aminotransferase (CAT). This study investigated the relative contributions of these three pathways to H2S production in PC12 cells (rat pheochromocytoma‐derived cells) and the rat dorsal root ganglion. CBS, CAT, and MPST, but not CSE, were expressed in the cells and tissues, and appreciable amounts of H2S were produced from L‐cysteine in the presence of α‐ketoglutarate, together with dithiothreitol. The production of H2S was inhibited by a CAT inhibitor (aminooxyacetic acid), competitive CAT substrates (L‐aspartate and oxaloacetate), and RNA interference (RNAi) against MPST. Immunocytochemistry revealed a mitochondrial localization of MPST in PC12 cells and dorsal root ganglion neurons, and the amount of H2S produced by CAT/MPST at pH 8.0, a physiological mitochondrial matrix pH, was comparable to that produced by CSE and CBS in the liver and the brain, respectively. Furthermore, H2S production was markedly increased by alkalization. These results indicate that CAT and MPST are primarily responsible for H2S production in peripheral neurons, and that the regulation of mitochondrial metabolism may influence neuronal H2S generation.

  相似文献   


8.
9.
The function of amyloid precursor protein (APP) is unknown, although the discovery that it contributes to the regulation of surface expression of N‐methyl‐d ‐aspartate (NMDA) receptors has afforded new insights into its functional significance. Since APP is a member of a gene family that contains two other members, amyloid precursor‐like proteins 1 and 2 (APLP1 and APLP2), it is important to determine if the related APP proteins possess the same properties as APP with respect to their interactions with NMDA receptors. Following expression in mammalian cells, both APLP1 and APLP2 behaved similarly to APP in that they both co‐immunoprecipitated with the two major NMDA receptor subtypes, GluN1/GluN2A and GluN1/GluN2B, via interaction with the obligatory GluN1 subunit. Immunoprecipitations from detergent extracts of adult mammalian brain showed co‐immunoprecipitation of APLP1 and APLP2 with GluN2A‐ and GluN2B‐containing NMDA receptors. Furthermore, similarly to APP, APLP1 and APLP2 both enhanced GluN1/GluN2A and GluN1/GluN2B cell surface expression. Thus, all the three members of the APP gene family behave similarly in that they each contribute to the regulation of cell surface NMDA receptor homoeostasis.

  相似文献   


10.
Axonal regeneration after injury to the CNS is hampered by myelin‐derived inhibitors, such as Nogo‐A. Natural products, such as green tea, which are neuroprotective and safe for long‐term therapy, would complement ongoing various pharmacological approaches. In this study, using nerve growth factor‐differentiated neuronal‐like Neuroscreen‐1 cells, we show that extremely low concentrations of unfractionated green tea polyphenol mixture (GTPP) and its active ingredient, epigallocatechin‐3‐gallate (EGCG), prevent both the neurite outgrowth‐inhibiting activity and growth cone‐collapsing activity of Nogo‐66 (C‐terminal domain of Nogo‐A). Furthermore, a synergistic interaction was observed among GTPP constituents. This preventive effect was dependent on 67‐kDa laminin receptor (67LR) to which EGCG binds with high affinity. The antioxidants N‐acetylcysteine and cell‐permeable catalase abolished this preventive effect of GTPP and EGCG, suggesting the involvement of sublethal levels of H2O2 in this process. Accordingly, exogenous sublethal concentrations of H2O2, added as a bolus dose (5 μM) or more effectively through a steady‐state generation (1–2 μM), mimicked GTPP in counteracting the action of Nogo‐66. Exogenous H2O2 mediated this action by bypassing the requirement of 67LR. Taken together, these results show for the first time that GTPP and EGCG, acting through 67LR and elevating intracellular sublethal levels of H2O2, inhibit the antineuritogenic action of Nogo‐A.

  相似文献   


11.
12.
By using two structurally unrelated hydrogen sulfide (H2S) donors 5‐(4‐methoxyphenyl) ‐3H‐1, 2‐dithiole‐3‐thione (ADT) and sodium hydrosulfide (NaHS), this study investigated if H2S protected blood–brain barrier (BBB) integrity following middle cerebral artery occlusion (MCAO). ICR mice underwent MCAO and received H2S donors at 3 h after reperfusion. Infarction, neurological scores, brain edema, Evans blue (EB) extravasation, and tight junction protein expression were examined at 48 h after MCAO. We also investigated if ADT protected BBB integrity by suppressing post‐ischemic inflammation‐induced Matrix Metalloproteimase‐9 (MMP9) and Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX). ADT increased blood H2S concentrations, decreased infarction, and improved neurological deficits. Particularly, ADT reduced EB extravasation, brain edema and preserved expression of tight junction proteins in the ischemic brain. NaHS also increased blood H2S levels and reduced EB extravasation following MCAO. Moreover, ADT inhibited expression of pro‐inflammatory markers induced Nitric Oxide Synthase (iNOS) and IL‐1β while enhanced expression of anti‐inflammatory markers arginase 1 and IL‐10 in the ischemic brain. Accordingly, ADT attenuated ischemia‐induced expression and activity of MMP9. Moreover, ADT reduced NOX‐4 mRNA expression, NOX activity, and inhibited nuclear translocation of Nuclear Factor Kappa‐B (NF‐κB) in the ischemic brain. In conclusion, H2S donors protected BBB integrity following experimental stroke possibly by acting through NF‐κB inhibition to suppress neuroinflammation induction of MMP9 and NOX4‐derived free radicals.

  相似文献   


13.
Middle cerebral artery occlusion (MCAO) induces secondary damages in the hippocampus that is remote from primary ischemic regions. Tau hyperphosphorylation is an important risk for neurodegenerative diseases. Increased tau phosphorylation has been identified in ischemic cortex, but little is known regarding the changes in the hippocampus. We showed that unilateral transient MCAO induced accumulation of hyperphosphorylated tau and concurrent dephosphorylation of glycogen synthase kinase‐3β at Ser 9 in the ipsilateral hippocampus. These MCAO‐induced changes were not reproduced when glutamatergic inputs from the entorhinal cortex to the hippocampus were transected; however, the changes were mimicked by intrahippocampal N‐methyl‐d ‐aspartate (NMDA) administration. Inhibition of NMDA receptor (NMDAR) subunit NR2B, but not NR2A activity in the hippocampus attenuated the accumulation of hyperphosphorylated tau and spatial cognitive impairment in MCAO rats. Together, our data suggest that overactivation of NR2B‐containing NMDARs through entorhinal–hippocampal connection plays an important role in the accumulation of hyperphosphorylated tau in the hippocampus following MCAO. Glycogen synthase kinase‐3β is an important protein kinase involved in NMDARs‐mediated tau hyperphosphorylation. This study indicates that early inhibition of NR2B‐containing NMDARs may represent a potential strategy to prevent or delay the occurrence of post‐stroke dementia.

  相似文献   


14.
The WWC1 gene has been genetically associated with human episodic memory performance, and its product KIdney/BRAin protein (KIBRA) has been shown to interact with the atypical protein kinase protein kinase M ζ (PKMζ). Although recently challenged, PKMζ remains a candidate postsynaptic regulator of memory maintenance. Here, we show that PKMζ is subject to rapid proteasomal degradation and that KIBRA is both necessary and sufficient to counteract this process, thus stabilizing the kinase and maintaining its function for a prolonged time. We define the binding sequence on KIBRA, a short amino acid motif near the C‐terminus. Both hippocampal knock‐down of KIBRA in rats and KIBRA knock‐out in mice result in decreased learning and memory performance in spatial memory tasks supporting the notion that KIBRA is a player in episodic memory. Interestingly, decreased memory performance is accompanied by decreased PKMζ protein levels. We speculate that the stabilization of synaptic PKMζ protein levels by KIBRA may be one mechanism by which KIBRA acts in memory maintenance.

  相似文献   


15.
Kiss1, a neuropeptide predominantly expressed in the habenula, modulates the serotonin (5‐HT) system to decrease odorant cue [alarm substance (AS)]‐evoked fear behaviour in the zebrafish. The purpose of this study was to assess the interaction of Kiss1 with the 5‐HT system as well as to determine the involvement of the 5‐HT receptor subtypes in AS‐evoked fear. We utilized 0. 28 mg/kg WAY 100635 (WAY), a selective 5‐HT1A receptor antagonist, to observe the effects of Kiss1 administration on AS‐evoked fear. We found WAY significantly inhibited the anxiolytic effects of Kiss1 (< 0.001) with an exception of freezing behaviour. Based on this, we utilized 92.79 mg/kg methysergide, a 5‐HT1 and 5‐HT2 receptor antagonist, and found that methysergide significantly blocked the anxiolytic effects of Kiss1 in the presence of the AS (< 0.001). From this, we conclude that Kiss1 modulates AS‐evoked fear responses mediated by the 5‐HT1A and 5‐HT2 receptors.

  相似文献   


16.
The N‐acylethanolamines (NAEs) exert important behavioral, physiological, and immunological effects through actions at cannabinoid and other receptors. We measured concentrations of three NAEs, the Km and Vmax for fatty acid amide hydrolysis (FAAH), FAAH protein and FAAH mRNA in prefrontal cortex, hippocampus, hypothalamus, amygdala, striatum, and cerebellum at 4 h intervals, starting at 03:00. Significant differences in N‐arachidonylethanolamine contents among the times examined occur in the prefrontal cortex (PFC), hippocampus, hypothalamus, and striatum. N‐Oleoylethanolamine concentrations exhibit large fluctuations over the day in the cerebellum, including a threefold decrease between 19:00 and 23:00. N‐Palmitoylethanolamine and N‐oleoylethanolamine were significantly, positively correlated in all regions examined except the hypothalamus. FAAH Km values are significantly affected by time of day in PFC, hippocampus and amygdala and FAAH Vmax values are significantly affected in PFC, hippocampus and cerebellum. However, correlational data indicate that FAAH does not play a primary role in the circadian regulation of the NAE concentrations. FAAH protein expression is not significantly different among the harvest times in any brain region examined. Concentrations of 2‐arachidonoylglycerol are significantly affected by time of harvest in the striatum and cerebellum, but not in other brain regions. Together, these data indicate that the NAEs exhibit diverse patterns of change with time of day that are likely the result of alterations in biosynthesis, and support the hypothesis that N‐arachidonylethanolamine is a tonic activator of cannabinoid receptor signaling.

  相似文献   


17.
We have previously shown that the selective sigma‐1 receptor (σ1R) antagonist S1RA (E‐52862) inhibits neuropathic pain and activity‐induced spinal sensitization in various pre‐clinical pain models. In this study we characterized both the behavioral and the spinal neurochemical effects of S1RA in the rat formalin test. Systemic administration of S1RA produced a dose‐related attenuation of flinching and lifting/licking behaviors in the formalin test. Neurochemical studies using concentric microdialysis in the ipsilateral dorsal horn of awake, freely moving rats revealed that the systemic S1RA‐induced antinociceptive effect occurs concomitantly with an enhancement of noradrenaline levels and an attenuation of formalin‐evoked glutamate release in the spinal dorsal horn. Intrathecal pre‐treatment with idazoxan prevented the systemic S1RA antinociceptive effect, suggesting that the S1RA antinociception depends on the activation of spinal α2‐adrenoceptors which, in turn, could induce an inhibition of formalin‐evoked glutamate release. When administered locally, intrathecal S1RA inhibited only the flinching behavior, whereas intracerebroventricularly or intraplantarly injected also attenuated the lifting/licking behavior. These results suggest that S1RA supraspinally activates the descending noradrenergic pain inhibitory system, which may explain part of its antinociceptive properties in the formalin test; however, effects at other central and peripheral sites also account for the overall effect.

  相似文献   


18.
Neuropilin tolloid‐like 1 (Neto1), is a CUB domain‐containing transmembrane protein that was recently identified as a novel component of the NMDA receptor complex. Here, we have investigated the possible association of Neto1 with the amyloid precursor protein (APP)695/GluN1/GluN2A and APP695/GluN1/GluN2B NMDA receptor trafficking complexes that we have previously identified. Neto1HA was shown to co‐immunoprecipitate with assembled NMDA receptors via GluN2A or GluN2B subunits; Neto1HA did not co‐immunoprecipitate APP695FLAG. Co‐immunoprecipitations from mammalian cells co‐transfected with APP695FLAG, Neto1HA and GluN1/GluN2A or GluN1/GluN2B revealed that all four proteins co‐exist within one macromolecular complex. Immunoprecipitations from native brain tissue similarly revealed the existence of a GluN1/GluN2A or GluN2B/APP/Neto1 complex. Neto1HA caused a reduction in the surface expression of both NMDA receptor subtypes, but had no effect on APP695FLAG‐ or PSD‐95αc‐Myc enhanced surface receptor expression. The Neto1 binding domain of GluN2A was mapped using GluN1/GluN2A chimeras and GluN2A truncation constructs. The extracellular GluN2A domain does not contribute to association with Neto1HA but deletion of the intracellular tail resulted in a loss of Neto‐1HA co‐immunoprecipitation which was paralleled by a loss of association between GluN2A and SAP102. Thus, Neto1 is concluded to be a component of APP/NMDA receptor trafficking complexes.

  相似文献   


19.
The pedunculopontine nucleus (PPN), the cholinergic arm of the reticular activating system, regulates waking and rapid eye movement sleep. Here, we demonstrate immunohistochemical labeling of the leptin receptor signaling isoform in PPN neurons, and investigated the effects of G‐protein modulation and the leptin triple antagonist (TA) on the action of leptin in the PPN. Whole‐cell patch clamp recordings were performed in rat brainstem slices from 9 to 17 day old pups. Previous results showed that leptin caused a partial blockade of sodium (INa) and h‐current (IH) in PPN neurons. TA (100 nM) reduced the blockade of INa (~ 50% reduction) and IH (~ 93% reduction) caused by leptin. Intracellular guanosine 5′‐[β‐thio]diphosphate trilithium salt (a G‐protein inhibitor) significantly reduced the effect of leptin on INa(~ 60% reduction) but not on IH (~ 25% reduction). Intracellular GTPγS (a G‐protein activator) reduced the effect of leptin on both INa (~ 80% reduction) and IH (~ 90% reduction). These results suggest that the effects of leptin on the intrinsic properties of PPN neurons are leptin receptor‐ and G‐protein dependent. We also found that leptin enhanced NMDA receptor‐mediated responses in single neurons and in the PPN population as a whole, an effect blocked by TA. These experiments further strengthen the association between leptin dysregulation and sleep disturbances.

  相似文献   


20.
Proteoglycans (PGs) are major constituents of the extracellular matrix and have recently been proposed to contribute to synaptic plasticity. Hippocampal PGs have not yet been studied or linked to memory. The aim of the study, therefore, was to isolate and characterize rat hippocampal PGs and determine their possible role in spatial memory. PGs were extracted from rat hippocampi by anion‐exchange chromatography and analyzed by nano LC‐MS/MS. Twenty male Sprague–Dawley rats were tested in the morris water maze. PGs agrin, amyloid beta A4 protein, brevican, glypican‐1, neurocan, phosphacan, syndecan‐4, and versican were identified in the hippocampi. Brevican and versican levels in the membrane fraction were higher in the trained group, correlating with the time spent in the target quadrant. α‐amino‐3‐hydroxy‐5‐methylisoxazole‐4‐propionate receptor GluR1 was co‐precipitated with brevican and versican. Levels for a receptor complex containing GluR1 was higher in trained while GluR2 and GluR3‐containing complex levels were higher in yoked rats. The findings provide information about the PGs present in the rat hippocampus, demonstrating that versican and brevican are linked to memory retrieval in the morris water maze and that PGs interact with α‐amino‐3‐hydroxy‐5‐methylisoxazole‐4‐propionate receptor GluR1, which is linked to memory retrieval.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号