首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cranial radiotherapy is common in pediatric oncology. Our purpose was to investigate if irradiation (IR) to the immature brain would increase the susceptibility to hypoxic‐ischemic injury in adulthood. The left hemisphere of postnatal day 10 (P10) mice was irradiated with 8 Gy and subjected to hypoxia‐ischemia (HI) on P60. Brain injury, neurogenesis and inflammation were evaluated 30 days after HI. IR alone caused significant hemispheric tissue loss, or lack of growth (2.8 ± 0.42 mm3, p < 0.001). Tissue loss after HI (18.2 ± 5.8 mm3, p < 0.05) was synergistically increased if preceded by IR (32.0 ± 3.5 mm3, p < 0.05). Infarct volume (5.1 ± 1.6 mm3) nearly doubled if HI was preceded by IR (9.8 ± 1.2 mm3, p < 0.05). Pathological scoring revealed that IR aggravated hippocampal, cortical and striatal, but not thalamic, injury. Hippocampal neurogenesis decreased > 50% after IR but was unchanged by HI alone. The number of newly formed microglia was three times higher after IR + HI than after HI alone. In summary, IR to the immature brain produced long‐lasting changes, including decreased hippocampal neurogenesis, subsequently rendering the adult brain more susceptible to HI, resulting in larger infarcts, increased hemispheric tissue loss and more inflammation than in non‐irradiated brains.  相似文献   

2.
Treatments to inhibit or repair neuronal cell damage sustained during focal ischemia/reperfusion injury in stroke are largely unavailable. We demonstrate that dietary supplementation with the antioxidant di‐tert‐butyl‐bisphenol (BP) before injury decreases infarction and vascular complications in experimental stroke in an animal model. We confirm that BP, a synthetic polyphenol with superior radical‐scavenging activity than vitamin E, crosses the blood–brain barrier and accumulates in rat brain. Supplementation with BP did not affect blood pressure or endogenous vitamin E levels in plasma or cerebral tissue. Pre‐treatment with BP significantly lowered lipid, protein and thiol oxidation and decreased infarct size in animals subjected to middle cerebral artery occlusion (2 h) and reperfusion (24 h) injury. This neuroprotective action was accompanied by down‐regulation of hypoxia inducible factor‐1α and glucose transporter‐1 mRNA levels, maintenance of neuronal tissue ATP concentration and inhibition of pro‐apoptotic factors that together enhanced cerebral tissue viability after injury. That pre‐treatment with BP ameliorates oxidative damage and preserves cerebral tissue during focal ischemic insult indicates that oxidative stress plays at least some causal role in promoting tissue damage in experimental stroke. The data strongly suggest that inhibition of oxidative stress through BP scavenging free radicals in vivo contributes significantly to neuroprotection.

  相似文献   


3.
4.
5.
Platelet‐activating factor (PAF) is an important mediator of anaphylaxis and is therefore an anti‐anaphylactic drug target. We recently reported that synthetic N‐terminally biotinylated peptides (BP4‐BP29) inhibit PAF by directly interacting with PAF and its metabolite/precursor lyso‐PAF. In this study, we investigated whether the biotinylated peptides can inhibit anaphylactic reactions in vivo. In mouse models of anaphylaxis, one of the peptides, BP21, markedly and dose‐dependently inhibited hypothermia with a maximum dose–response within 30 min after administration, even at doses 20 times lesser than doses of the known PAF antagonist CV‐3988. In contrast, the anti‐hypothermic effect of BGP21, in which the Tyr‐Lys‐Asp‐Gly sequence in BP21 was modified to a Gly‐Gly‐Gly‐Gly sequence, was less than that of BP21. The alanine scanning and shuffling the amino acid residues of BP4 (Tyr‐Lys‐Asp‐Gly) demonstrated that the Tyr‐Lys‐Asp‐Gly consensus sequence is important for the inhibitory effect of the peptide on hypothermia. BP21 also suppressed vascular permeability during anaphylaxis with a maximum dose–response within 30 min of administration. In a rat model of hind paw oedema, BP21 significantly inhibited the oedema induced by PAF but not that induced by the other pro‐inflammatory mediators, such as histamine, serotonin, and bradykinin. Tryptophan fluorescence measurements showed that BP21 interacted with PAF, but not with histamine, serotonin, or bradykinin. In contrast, BGP21 did not interact with PAF. These results suggest that biotinylated peptides, especially BP21, can specifically and markedly inhibit anaphylactic reactions in vivo and that this involves direct interaction of its Tyr‐Lys‐Asp‐Gly region with PAF. Therefore, a biotinylated peptide, BP21, can be used as novel potential anti‐anaphylactic drugs targeting PAF. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

6.
7.
Ischemic postconditioning is increasingly being investigated as a therapeutic approach for cerebral ischemia. However, the majority of studies are focused on the acute protection of neurons per se . Whether and how postconditioning affects multiple cells in the recovering neurovascular unit remains to be fully elucidated. Here, we asked whether postconditioning may modulate help‐me signaling between injured neurons and reactive microglia. Rats were subjected to 100 min of focal cerebral ischemia, then randomized into a control versus postconditioning group. After 3 days of reperfusion, infarct volumes were significantly reduced in animals treated with postconditioning, along with better neurologic outcomes. Immunostaining revealed that ischemic postconditioning increased expression of vascular endothelial growth factor (VEGF ) in neurons within peri‐infarct regions. Correspondingly, we confirmed that VEGFR 2 was expressed on Iba1‐positive microglia/macrophages, and confocal microscopy showed that in postconditioned rats, these cells were polarized to a ramified morphology with higher expression of M2‐like markers. Treating rats with a VEGF receptor 2 kinase inhibitor negated these effects of postconditioning on microglia/macrophage polarization. In vitro , postconditoning after oxygen‐glucose deprivation up‐regulated VEGF release in primary neuron cultures, and adding VEGF to microglial cultures partly shifted their M2‐like markers. Altogether, our findings support the idea that after postconditioning, injured neurons may release VEGF as a ‘help‐me’ signal that promotes microglia/macrophage polarization into potentially beneficial phenotypes.

  相似文献   

8.
Focal cerebral ischemia and reperfusion initiates complex cellular and molecular interactions that lead to either cell repair or destruction. In earlier work, we found that activin A is an early gene response to cerebral ischemia and supports cortical neuron survival in vitro. In this study, the ability of exogenous activin A to attenuate injury from transient middle cerebral artery occlusion was tested in adult mice. Intracerebroventricular administration of activin A prior to middle cerebral artery occlusion reduced infarct volume apparent 1 day after experimental stroke. A single activin A administration at 6 h following ischemia/reperfusion reduced lesion volumes at 1 and 3 days and led to improved neurobehavior. Moreover, activin A treatment spared neurons within the ischemic hemisphere and led to a concomitant reduction in microglial activation. Activation of the stress-responsive kinases p38 and c- jun N-terminal kinase implicated in neuronal apoptosis after stroke was reduced following activin A treatment. Together these findings suggest that activin A promotes tissue survival after focal cerebral ischemia/reperfusion with an extended therapeutic window.  相似文献   

9.
Vagus nerve stimulation (VNS) exerts neuroprotective effects against cerebral ischemia/reperfusion (I/R) injury and modulates redox status, potentially through the activity of miR‐210, an important microRNA that is regulated by hypoxia‐inducible factor and Akt‐dependent pathways. The aim of this study was to determine the mechanisms of VNS‐ and miR‐210‐mediated hypoxic tolerance. Male Sprague–Dawley rats were preconditioned with a miR‐210 antagomir (A) or with an antagomir control (AC), followed by middle cerebral artery occlusion and VNS treatment. The animals were divided into eight groups: sham I/R, I/R, I/R+AC, I/R+A, sham I/R+VNS, I/R+VNS, I/R+VNS+AC, and I/R+VNS+A. Activation of the endogenous cholinergic a7 nicotinic acetylcholine receptor (a7nAchR) pathway was identified using double immunofluorescence staining. miR‐210 expression was measured by PCR. Behavioral outcomes, infarct volume, and neuronal apoptosis were observed at 24 h following reperfusion. Markers of oxidative stress were detected using ELISA. Rats treated with VNS showed increased miR‐210 expression as well as decreased apoptosis and antioxidant stress responses compared with the I/R group; these rats also showed increased p‐Akt protein expression and significantly decreased levels of cleaved caspase 3 in the ischemic penumbra, as measured by western blot and immunofluorescence analyses, respectively. Strikingly, the beneficial effects of VNS were attenuated following miR‐210 knockdown. In conclusion, our results indicate that miR‐210 is a potential mediator of VNS‐induced neuroprotection against I/R injury. Our study highlights the neuroprotective potential of VNS, which, to date, has been largely unexplored.

  相似文献   


10.
Current therapy for chronic kidney disease (CKD) is unsatisfactory because of an insufficient understanding of its pathogenesis. Matrix remodelling‐associated protein 5 (MXRA5, adlican) is a human protein of unknown function with high kidney tissue expression, not present in rodents. Given the increased expression of MXRA5 in injured tissues, including the kidneys, we have suggested that MXRA5 may modulate kidney injury. MXRA5 immunoreactivity was observed in tubular cells in human renal biopsies and in urine from CKD patients. We then explored factors regulating MXRA5 expression and MXRA5 function in cultured human proximal tubular epithelial cells and explored MXRA5 expression in kidney cancer cells and kidney tissue. The fibrogenic cytokine transforming growth factor‐β1 (TGFβ1) up‐regulated MXRA5 mRNA and protein expression. TGFβ1‐induced MXRA5 up‐regulation was prevented by either interference with TGFβ1 activation of the TGFβ receptor 1 (TGFBR1, ALK5) or by the vitamin D receptor agonist paricalcitol. By contrast, the pro‐inflammatory cytokine TWEAK did not modulate MXRA5 expression. MXRA5 siRNA‐induced down‐regulation of constitutive MXRA5 expression resulted in higher TWEAK‐induced expression of chemokines. In addition, MXRA5 down‐regulation resulted in a magnified expression of genes encoding extracellular matrix proteins in response to TGFβ1. Furthermore, in clear cell renal cancer, von Hippel–Lindau (VHL) regulated MXRA5 expression. In conclusion, MXRA5 is a TGFβ1‐ and VHL‐regulated protein and, for the first time, we identify MXRA5 functions as an anti‐inflammatory and anti‐fibrotic molecule. This information may yield clues to design novel therapeutic strategies in diseases characterized by inflammation and fibrosis.  相似文献   

11.
Tan‐67 is a selective non‐peptidic δ‐opioid receptor (DOR ) agonist that confers neuroprotection against cerebral ischemia/reperfusion (I/R)‐caused neuronal injury in pre‐treated animals. In this study, we examined whether post‐ischemic administration of Tan‐67 in stroke mice is also neuroprotective and whether the treatment affects expression, maturation and processing of the amyloid precursor protein (APP ). A focal cerebral I/R model in mice was induced by middle cerebral artery occlusion for 1 h and Tan‐67 (1.5, 3 or 4.5 mg/kg) was administered via the tail vein at 1 h after reperfusion. Alternatively, naltrindole, a selective DOR antagonist (5 mg/kg), was administered 1 h before Tan‐67 treatment. Our results showed that post‐ischemic administration of Tan‐67 (3 mg/kg or 4.5 mg/kg) was neuroprotective as shown by decreased infarct volume and neuronal loss following I/R. Importantly, Tan‐67 improved animal survival and neurobehavioral outcomes. Conversely, naltrindole abolished Tan‐67 neuroprotection in infarct volume. Tan‐67 treatment also increased APP expression, maturation and processing in the ipsilateral penumbral area at 6 h but decreased APP expression and maturation in the same brain area at 24 h after I/R. Tan‐67‐induced increase in APP expression was also seen in the ischemic cortex at 24 h following I/R. Moreover, Tan‐67 attenuated BACE ‐1 expression, β‐secretase activity and the BACE cleavage of APP in the ischemic cortex at 24 h after I/R, which was abolished by naltrindole. Our data suggest that Tan‐67 is a promising DOR ‐dependent therapeutic agent for treating I/R‐caused disorder and that Tan‐67‐mediated neuroprotection may be mediated via modulating APP expression, maturation and processing, despite an uncertain causative relationship between the altered APP and the outcomes observed.

  相似文献   

12.
Asthma is a chronic inflammatory disease induced by Type 2 helper T cells and eosinophils. Vascular cell adhesion molecule‐1 (VCAM‐1) has been implicated in recruiting eosinophils and lymphocytes to pathological sites in asthma as a regulatory receptor. Accordingly, monoclonal antibody (mAb) against VCAM‐1 may attenuate allergic inflammation and pathophysiological features of asthma. We attempted to evaluate whether a recently developed human anti‐VCAM‐1 mAb can inhibit the pathophysiological features of asthma in a murine asthma model induced by ovalbumin (OVA). Leucocyte adhesion inhibition assay was performed to evaluate the in vitro blocking activity of human anti‐VCAM‐1 mAb. OVA‐sensitized BALB/c mice were treated with human anti‐VCAM‐1 mAb or isotype control Ab before intranasal OVA challenge. We evaluated airway hyperresponsiveness (AHR) and bronchoalveolar lavage fluid analysis, measured inflammatory cytokines and examined histopathological features. The human anti‐VCAM‐1 mAb bound to human and mouse VCAM‐1 molecules and inhibited adhesion of human leucocytes in vitro. AHR and inflammatory cell counts in bronchoalveolar lavage fluid were reduced in mice treated with human anti‐VCAM‐1 mAb as compared with a control Ab. The levels of interleukin (IL)‐5 and IL‐13, as well as transforming growth factor‐β, in lung tissue were decreased in treated mice. Human anti‐VCAM‐1 mAb reduced goblet cell hyperplasia and peribronchial fibrosis. In vivo VCAM‐1 expression decreased in the treated group. In conclusion, human anti‐VCAM‐1 mAb attenuated allergic inflammation and the pathophysiological features of asthma in OVA‐induced murine asthma model. The results suggested that human anti‐VCAM‐1 mAb could potentially be used as an additional anti‐asthma therapeutic medicine.  相似文献   

13.
Baicalin had neuroprotective effects on inhibiting neuronal cell apoptosis induced by spinal cord ischemic injury. This study aimed to explore the protective effects of Baicalin on rats with spinal cord injury (SCI) and its mechanism of action. The recovery of spinal cord nerve function in rats was evaluated by the Basso, Beattie, and Bresnahan (BBB) score and the combine behavioral score (CBS). The expressions of cytokines tumor necrosis factor α (TNF‐α), interleukin‐1β (IL‐1β), and IL‐6 were detected by the enzyme‐linked immunosorbent assay method. Expressions of inflammation‐related proteins were detected by Western blot. Multivariate statistical analysis was performed for serum metabolites. The BBB and CBS score results showed that Baicalin had a certain improvement on rats with SCI. SCI symptoms were significantly improved in low‐dose and high‐dose groups. The levels of TNF‐α, IL‐1β, and IL‐6 in the SCI group were significantly increased. The expressions of NF‐κB p65, NF‐κB p50, p‐IκBα, and IKKα in the SCI group showed the opposite trend compared with the low‐dose and high‐dose groups. Compared with the sham group, glutamine, levels of 3‐OH‐butyrate, N‐acetylaspartate, and glutathione were significantly reduced, and the levels of glutamate and betaine were significantly increased in the SCI group. When Baicalin was administered, the contents of glutamine synthase (GS) and glutaminase (GLS) were significantly reduced, indicating that Baicalin had the effect of improving GS and GLS. Baicalin has protective effects on improving SCI and lower extremity motor function, has a significant anti‐inflammatory effect, and regulates the serum metabolic disorder caused by SCI in rats.  相似文献   

14.
The objective of our study was to determine granulocyte‐macrophage colony‐stimulating factor (GM‐CSF) activity in the brain following GM‐CSF induction. We injected recombinant mouse GM‐CSF into the brains of 8‐month‐old C57BL6 mice via intracerebroventricular injections and studied the activities of microglia, astrocytes, and neurons. We also sought to determine whether an anti‐GM‐CSF antibody could suppress endogenous microglial activity in the C57BL6 mice and could also suppress microglial activity induced by the recombinant mouse GM‐CSF in another group of C57BL6 mice. Using quantitative real‐time RT‐PCR, we assessed microglial, astrocytic, and neuronal activity by measuring mRNA expression of pro‐inflammatory cytokines, GFAP, and the neuronal marker NeuN in the cerebral cortex tissues from C57BL6 mice. We performed immunoblotting and immunohistochemistry of activated microglia in different regions of the brains from control (phosphate‐buffered saline‐injected C57BL6 mice) and experimental mice (recombinant GM‐CSF‐injected C57BL6 mice, GM‐CSF antibody‐injected C57BL6 mice, and recombinant mouse GM‐CSF plus anti‐GM‐CSF antibody‐injected C57BL6 mice). We found increased mRNA expression of CD40 (9.75‐fold), tumor necrosis factor‐alpha (2.1‐fold), CD45 (1.73‐fold), and CD11c (1.70‐fold) in the cerebral cortex of C57BL6 mice that were induced with recombinant GM‐CSF, compared with control mice. Further, the anti‐GM‐CSF antibody suppressed microglia in mice that were induced with recombinant GM‐CSF. Our immunoblotting and immunohistochemistry findings of GM‐CSF‐associated cytokines in C57BL6 mice induced with recombinant GM‐CSF, in C57BL6 mice injected with the anti‐GM‐CSF antibody, and in C57BL6 mice injected with recombinant mouse GM‐CSF plus anti‐GM‐CSF antibody concurred with our real‐time RT‐PCR findings. These findings suggest that GM‐CSF is critical for microglial activation and that anti‐GM‐CSF antibody suppresses microglial activity in the CNS. The findings from this study may have implications for anti‐inflammatory effects of Alzheimer’s disease and experimental autoimmune encephalomyelitis mice (a multiple sclerosis mouse model).  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号