共查询到20条相似文献,搜索用时 0 毫秒
1.
Philippe Fossier Gérard Baux Bernard Poulain Ladislav Tauc 《Cellular and molecular neurobiology》1990,10(3):383-404
1. Possible interactions of contrathion (pralidoxime sulfomethylate), a reactivator of phosphorylated acetylcholinesterase (AChE), with the regulation of cholinergic transmission were investigated on an identified synapse in the buccal ganglion of Aplysia californica. 2. Transmitter release was evoked either by a presynaptic action potential or, under voltage clamp, by a long depolarization of the presynaptic cell. At concentrations higher than 10(-5) M, bath-applied contrathion decreased the amplitude of miniature postsynaptic currents and increased their decay time. At the same time, the quantal release of ACh was transiently facilitated. The facilitatory effect of contrathion was prevented by tubocurarine but not by atropine. Because in this preparation, these drugs block, respectively, the presynaptic nicotinic-like and muscarinic-like receptors involved in positive and negative feedback of ACh release, we proposed that contrathion activates presynaptic nicotinic-like receptors. 3. Differential desensitization of the presynaptic receptors is proposed to explain the transience of the facilitatory action of contrathion on ACh release. 4. The complexity of the synaptic action of contrathion raises the possibility that its therapeutic effects in AChE poisonings are not limited to AChE reactivation. 相似文献
2.
Garro MA López de Jesús M Ruíz de Azúa I Callado LF Meana JJ Sallés J 《Neurochemical research》2004,29(7):1461-1465
The phosphoinositide signal transduction system, and particularly, phospholipase Cbeta isozymes, are relevant in the etiopathogeny of human neuropsychiatric pathologies such as depression. Stimulation of phospholipase Cbeta activity by muscarinic receptors and G proteins was determined in crude and synaptosomal membrane preparations from nine postmortem human frontal cortices (postmortem delay range 8 to 50 h). Thus, the phospholipase Cbeta activity was determined by measuring the hydrolysis of exogenous [3H]-phosphatidylinositol 4,5-bisphosphate. There was a postmortem delay-mediated decrease in the PIP2 hydrolysis irrespective of the membrane preparation used (P < 0.05). Moreover, there were statistically significant differences for exponential decay curve parameters (K factor and Span) of PLCbeta activity induced by agonist-mediated activation between crude and synaptosomal membrane preparations. These results show that the postsynaptic component of the PLCbeta activity is more sensible to the postmortem delay effect. 相似文献
3.
Studies in various cells have led to the idea that agonist-stimulated diacylglycerol (DAG) generation results from an early, transient phospholipase C (PLC)-catalyzed phosphoinositide breakdown, while a more sustained elevation of DAG originates from phosphatidylcholine (PC). We have examined this issue further, using cultured rat hepatocytes, and report here that various G protein-coupled receptor (GPCR) agonists, including vasopressin (VP), angiotensin II (Ang.II), prostaglandin F2alpha, and norepinephrine (NE), may give rise to a prolonged phosphoinositide hydrolysis. Preincubation of hepatocytes with 1-butanol to prevent conversion of phosphatidic acid (PA) did not affect the agonist-induced DAG accumulation, suggesting that phospholipase D-mediated breakdown of PC was not involved. In contrast, the GPCR agonists induced phosphoinositide turnover, assessed by accumulation of inositol phosphates, that was sustained for up to 18 h, even under conditions where PLC was partially desensitized. Pretreatment of hepatocytes with wortmannin, to inhibit synthesis of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate (PIP2), prevented agonist-induced inositol phosphate and DAG accumulation. Upon VP stimulation the level of PIP) declined, but only transiently, while increases in inositol 1,4,5-trisphosphate (InsP3) and DAG mass were sustained, suggesting that efficient resynthesis of PIP2 allowed sustained PLC activity. This was confirmed when cells were pretreated with wortmannin to prevent resynthesis of PIP2. Furthermore, metabolism of InsP3 was rapid, compared to that of DAG, with a more than 20-fold difference in half-life. Thus, rapid metabolism of InsP3 and efficient resynthesis of PIP2 may account for the larger amount of DAG generated and the more sustained time course, compared to InsP3. The results suggest that DAG accumulation that is sustained for many hours in response to VP, Ang.II, NE, and prostaglandin F2alpha in hepatocytes is mainly due to phosphoinositide breakdown. 相似文献
4.
Damgaard Inge Nyitrai Gabriella Kovács Ilona Kardos Julianna Schousboe Arne 《Neurochemical research》1999,24(9):1189-1193
Cerebellar granule cells in culture express receptors for GABA belonging to the GABAA and GABAB classes. In order to characterize the ability of the insecticide lindane to interact with these receptors cells were grown in either plain culture media or media containing 150 M THIP as this is known to influence the properties of both GABAA and GABAB receptors. It was found that lindane regardless of the culture condition inhibited evoked (40 mM K+) release of neurotransmitter ([3H]D-aspartate as label for glutamate). In naive cells both GABAA and GABAB receptor active drugs prevented the inhibitory action of lindane but in THIP treated cultures none of the GABAA and GABAB receptor active drugs had any effect on the inhibitory action of lindane. This lack of effect was not due to inability of baclofen itself to inhibit transmitter release. It is concluded that lindane dependent on the state of the GABAA and GABAB receptors is able to indirectly interfere with both GABAA and GABAB receptors. In case of the latter receptors it was shown using [3H]baclofen to label the receptors that lindane could not displace the ligand confirming that lindane is likely to exert its action at a site different from the agonist binding site. 相似文献
5.
6.
Abstract: We have studied the effect of glutamate and the glutamatergic agonists N-methyl-d -aspartate (NMDA), kainate, and α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) on [3H]GABA release from the external plexiform layer of the olfactory bulb. The GABA uptake blocker nipecotic acid significantly increased the basal [3H]GABA release and the release evoked by a high K+ concentration, glutamate, and kainate. The glutamate uptake blocker pyrrolidine-2,4-dicarboxylate (2,4-PDC) inhibited by 50% the glutamate-induced [3H]GABA release with no change in the basal GABA release. The glutamatergic agonists NMDA, kainate, and AMPA also induced a significant [3H]GABA release. The presence of glycine and the absence of Mg2+ have no potentiating effect on NMDA-stimulated release; however, when the tissue was previously depolarized with a high K+ concentration, a significant increase in the NMDA response was observed that was potentiated by glycine and inhibited by the NMDA receptor antagonist 2-amino-5-phosphonoheptanoic acid (AP-7). The kainate and AMPA effects were antagonized by the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) but not by AP-7. The glutamate effect was also inhibited by CNQX but not by the NMDA antagonist 2-amino-5-phosphonopentanoic acid (AP-5); nevertheless, in the presence of glycine, [3H]GABA release evoked by glutamate was potentiated, and this response was significantly antagonized by AP-5. Tetrodotoxin inhibited glutamate- and kainate-stimulated [3H]GABA release but not the NMDA-stimulated release. The present results show that in the external plexiform layer of the olfactory bulb, glutamate is stimulating GABA release through a presynaptic, receptor-mediated mechanism as a mixed agonist on NMDA and non-NMDA receptors; glutamate is apparently also able to induce GABA release through heteroexchange. 相似文献
7.
The effects of glutamate agonists and their selective antagonists on the Ca2+-dependent and independent releases of [3H]GABA from rat coronal hippocampal slices were studied in a superfusion system. The Ca2+-dependent release evoked by glutamate, kainate and N-methyl-D-aspartate (NMDA) gradually declined with time despite the continuous presence of the agonists. Quisqualate (QA) caused a sustained release which exhibited no tendency to decline within the 20-min period of stimulation. This release was enhanced in Ca2+-free medium. The release evoked by QA in Ca2+-containing medium was significantly inhibited by (+)-5-methyl-10,11-dihydro-5H-dibenzo(a,d)cyclohept-5,10-imine hydrogen maleate (MK-801) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), showing that QA activates NMDA receptors directly or indirectly through (RS)--amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors. The inhibition of MK-801 was slightly diminished and that of CNQX totally abolished in Ca2+-free medium. Verapamil inhibited the QA-activated release in both Ca2+-containing and Ca2+-free media. The effect of QA but not that of AMPA was blocked in Ca2+-free medium by L(+)-2-amino-3-phosphonopropionate (L-AP3), a selective antagonist of the metabotropic glutamate receptor. It is suggested that the sustained release of GABA is also mediated partly by activation of metabotropic receptors and mobilization of Ca2+ from intracellular stores. 相似文献
8.
Microdialysis of the striatum of halothane-anesthetized rats was used to study the participation of local cholinergic and GABAergic neurotransmission in NMDA receptor-modulated striatal dopamine release and metabolism. Reverse dialysis.of NMDA (1 mM) evoked a 10-fold increase in dopamine efflux and reduced DOPAC and HVA to > 20% of basal values. The effect of NMDA on dopamine efflux was abolished by atropine (10 microM) but unaffected by (+)-bicuculline (50 microM). NMDA-induced decrease in DOPAC (but not HVA) efflux was potentiated by atropine, whereas (+)-bicuculline attenuated the decrease in DOPAC and HVA. Compared to our previous studies in unanesthetised rats, our data suggest that halothane anesthesia alters the balance between NMDA-stimulated cholinergic and GABAergic influences on striatal dopamine release and metabolism. Differential sensitivity to halothane of NMDA receptors expressed by the neurones mediating these modulatory influences, or loss of specific NMDA receptor populations through voltage-dependent Mg2+ block under anesthesia, could underlie these observations. 相似文献
9.
Yuan Su Maoyin Li Liang Guo Xuemin Wang 《The Plant journal : for cell and molecular biology》2018,94(2):315-326
Phosphate (Pi) deficiency in soils is a major limiting factor for plant growth. In response to Pi deprivation, one prominent metabolic adaptation in plants is the decrease in membrane phospholipids that consume approximately one‐third cellular Pi. The level of two phospholipid‐hydrolyzing enzymes, phospholipase Dζ2 (PLDζ2) and non‐specific phospholipase C4 (NPC4), is highly induced in Pi‐deprived Arabidopsis. To determine the role of PLDζ2 and NPC4 in plant growth under Pi limitation, Arabidopsis plants deficient in both PLDζ2 and NPC4 (npc4pldζ2) were generated and characterized. Lipid remodeling in leaves and roots was analyzed at three different durations of Pi deficiency. NPC4 affected lipid changes mainly in roots at an early stage of Pi deprivation, whereas PLDζ2 exhibited a more overt effect on lipid remodeling in leaves at a later stage of Pi deprivation. Pi deficiency‐induced galactolipid increase and phospholipid decrease were impeded in pldζ2 and npc4pldζ2 plants. In addition, seedlings of npc4pldζ2 had the same root hair density as pldζ2 but shorter root hair length than pldζ2 in response to Pi deficiency. The loss of NPC4 decreased root hair length but had no effect on root hair density. These data suggest that PLDζ2 and NPC4 mediate the Pi deprivation‐induced lipid remodeling in a tissue‐ and time‐specific manner. PLDζ2 and NPC4 have distinctively different roles in root hair growth and development in response to Pi deprivation; PLDζ2 negatively modulates root hair density and length, whereas NPC4 promotes root hair elongation. 相似文献
10.
GABA Release Modified by Adenosine Receptors in Mouse Hippocampal Slices under Normal and Ischemic Conditions 总被引:3,自引:0,他引:3
The excitatory glutamatergic neurons in the hippocampus are modulated by inhibitory GABA-releasing interneurons. The neuromodulator adenosine is known to inhibit the presynaptic release of neurotransmitters and to hyperpolarize postsynaptic neurons in the hippocampus, which would imply that it is an endogenous protective agent against cerebral ischemia and excitotoxic neuronal damage. Interactions of the GABAergic and adenosinergic systems in regulating neuronal excitability in the hippocampus is of crucial importance, particularly under cell-damaging conditions. We now characterized the effects of adenosine receptor agonists and antagonists on the release of preloaded [3H]GABA from hippocampal slices prepared from adult (3-month-old) mice, using a superfusion system. The effects were tested both under normal conditions and in ischemia induced by omitting glucose and oxygen from the superfusion medium. Basal and K+-evoked GABA release in the hippocampus were depressed by adenosinergic compounds. Under normal conditions activation of both adenosine A1 and A2A receptors by the agonists R(-)N6-(2-phenylisopropyl)adenosine and CGS 21680 inhibited the K+-evoked release, which effects were blocked by their specific antagonists, 8-cyclopentyl-1,3-dipropyl-xanthine and 3,7-dimethyl-1-propargylxanthine, respectively. Under ischemic conditions the release of both GABA and adenosine is markedly enhanced. The above receptor agonists then depressed both the basal and K+-evoked GABA release, only the action of A2A receptors being however receptor-mediated. The demonstrated depression of GABA release by adenosine in the hippocampus could be deleterious to neurons and contribute to excitotoxicity. 相似文献
11.
12.
The proposal of cholinomimetic treatment as a rational basis for the therapy of Alzheimer's disease has been prematurely dismissed by some workers on the hypothesis of impaired coupling/signal transduction of postsynaptic cholinergic receptors. Disparity of reports studying such impairment may be due to inappropriate extrapolation of experimental systems to the physiological stituation, as well as inadequate consideration of disease epiphenoma. In the present study we have used samples with short duration of terminal coma, collected using techniques to minimise postmortem autolysis, and samples obtained during neurosurgery to examine carbachol stimulated hydrolysis of [3H]phosphatidylinositol (PI) as a marker for receptor/signal transduction integrity. The influence of postmortem delay was also studied using another series of samples and a rat model. While a significant correlation of postmortem delay and carbachol stimulated [3H]PI hydrolysis was found, comparison of pooled neurosurgical and postmortem controls with AD samples revealed no significant reduction. Thus this study concurs with a similar one previously reported here, using [3H]phosphatidylinositol 4,5-bisphosphate (1). They provide evidence for competent receptor-signal transduction events in AD, supporting the use of cholinomimetic therapy for disease treatment. 相似文献
13.
Abstract: γ-Aminobutyric acid (GABA) is a major inhibitory neurotransmitter in the mammalian retina, where it serves many roles in establishing complex response characteristics of ganglion cells. We now provide biochemical and physiological evidence that at least three subclasses of GABA receptors (A1, A2, and B) contribute to different types of synaptic integration. Receptor binding studies indicate that approximately three-fourths of the total number of [3 H]GABA binding sites in retina are displaced by the GABAA receptor antagonist, bicuculline, whereas one-fourth are displaced by the GABA-B receptor agonist, baclofen. GABAA receptors can be described by a three-site binding model with KD values of 19 n M , 122 n M , and 5.7 μ M . Benzodiazepines and barbiturates potentiate binding to the GABAA site, which suggests that significant numbers of GABAA receptors are coupled to regulatory sites for these compounds and thus are classified as GABAA1 receptors. The response to pentobarbital appears to involve a conversion of low-affinity sites to higher-affinity sites, and is reflected in changes in the densities of sites at different affinities. Functional studies were used to establish which of the different receptor subclasses regulate release from cholinergic amacrine cells. Our results show that GABA suppresses light-evoked [3 H]acetylcholine release via GABAA2 receptors not coupled to a benzodiazepine or barbiturate regulatory site, and enhances release via GABAB receptors. GABAA1 sites do not appear to control acetylcholine release in rabbit retina. 相似文献
14.
Nitric oxide (NO), previously demonstrated to participate in the regulation of the resting membrane potential in skeletal muscles via muscarinic receptors, also regulates non-quantal acetylcholine (ACh) secretion from rat motor nerve endings. Non-quantal ACh release was estimated by the amplitude of endplate hyperpolarization (H-effect) following a blockade of skeletal muscle post-synaptic nicotinic receptors by (+)-tubocurarine. The muscarinic agonists oxotremorine and muscarine lowered the H-effect and the M1 antagonist pirenzepine prevented this effect occurring at all. Another muscarinic agonist arecaidine but-2-ynyl ester tosylate (ABET), which is more selective for M2 receptors than for M1 receptors and 1,1-dimethyl-4-diphenylacetoxypiperidinium (DAMP), a specific antagonist of M3 cholinergic receptors had no significant effect on the H-effect. The oxotremorine-induced decrease in the H-effect was calcium and calmodulin-dependent. The decrease was negated when either NO synthase was inhibited by N(G)-nitro-L-arginine methyl ester or soluble guanylyl cyclase was inhibited by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. The target of muscle-derived NO is apparently nerve terminal guanylyl cyclase, because exogenous hemoglobin, acting as an NO scavenger, prevented the oxotremorine-induced drop in the H-effect. These results suggest that oxotremorine (and probably also non-quantal ACh) selectively inhibit the non-quantal secretion of ACh from motor nerve terminals acting on post-synaptic M1 receptors coupled to Ca(2+) channels in the sarcolemma to induce sarcoplasmic Ca(2+)-dependent synthesis and the release of NO. It seems that a substantial part of the H-effect can be physiologically regulated by this negative feedback loop, i.e., by NO from muscle fiber; there is apparently also Ca(2+)- and calmodulin-dependent regulation of ACh non-quantal release in the nerve terminal itself, as calmidazolium inhibition of the calmodulin led to a doubling of the resting H-effect. 相似文献
15.
Yang J Seo J Nair R Han S Jang S Kim K Han K Paik SK Choi J Lee S Bae YC Topham MK Prescott SM Rhee JS Choi SY Kim E 《The EMBO journal》2011,30(1):165-180
Diacylglycerol (DAG) is an important lipid second messenger. DAG signalling is terminated by conversion of DAG to phosphatidic acid (PA) by diacylglycerol kinases (DGKs). The neuronal synapse is a major site of DAG production and action; however, how DGKs are targeted to subcellular sites of DAG generation is largely unknown. We report here that postsynaptic density (PSD)-95 family proteins interact with and promote synaptic localization of DGKι. In addition, we establish that DGKι acts presynaptically, a function that contrasts with the known postsynaptic function of DGKζ, a close relative of DGKι. Deficiency of DGKι in mice does not affect dendritic spines, but leads to a small increase in presynaptic release probability. In addition, DGKι-/- synapses show a reduction in metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD) at neonatal (~2 weeks) stages that involve suppression of a decrease in presynaptic release probability. Inhibition of protein kinase C normalizes presynaptic release probability and mGluR-LTD at DGKι-/- synapses. These results suggest that DGKι requires PSD-95 family proteins for synaptic localization and regulates presynaptic DAG signalling and neurotransmitter release during mGluR-LTD. 相似文献
16.
The effects of metabotropic glutamate receptor agonists on the basal and potassium (50 mM K+)-stimulated release of [3H]GABA from mouse hippocampal slices were investigated using a superfusion system. The group I agonist (1±)-1-aminocyclopentane-trans-1,3-dicarboxylate enhanced the basal GABA release and reduced the K+-evoked release by a mechanism antagonized by (RS)-1-aminoindan-1,5-dicarboxylate in both cases. The group II agonist (2S,2R,3R)-2-(2,3-dicarboxycyclopropyl)glycine failed to have any effect on the basal release, but inhibited the stimulated release. This inhibition was not affected by the antagonist (2S)-2-ethylglutamate. The group III agonists L(+)-amino-4-phosphonobutyrate and O-phospho-L-serine inhibited the basal GABA release, which effects were blocked by the antagonist (RS)-2-cyclopropyl-4-phosphonophenylglycine. Moreover, the suppression of the K+-evoked release by L(+)2-amino-4-phosphonobutyrate was apparently receptor-mediated, being blocked by (RS)-2-cyclopropyl-4-phosphonophenylglycine. The results show that activation of metabotropic glutamate receptors of group I is able to potentiate the basal release of GABA, whereas activation of groups I and III receptors reduce K+-stimulated release in mouse hippocampal slices. 相似文献
17.
GABA Induces Functionally Active Low-Affinity GABA Receptors on Cultured Cerebellar Granule Cells 总被引:3,自引:12,他引:3
The effect of γ-aminobutyric acid (GABA) and its agonists muscimol and 4,5,6,7-tetrahydroisoxazolo[5-4-c]pyridin-3-ol (THIP) on the development of GABA receptors on cerebellar granule cells was studied by cultivation of the cells in media containing these substances. It was found that the presence of 50 μM GABA in the culture media led to the induction of low-affinity GABA receptors (KD 546 ± 117 nM) in addition to the high-affinity receptors (KD 7 ± 0.5 nM) which were present regardless of the presence of GABA in the culture media. The functional activity of the GABA receptors was tested by investigating the ability of GABA to modulate evoked glutamate release from the cells. It was found that GABA could inhibit evoked glutamate release (ED50 10 ± 3 (μM) only when the cells had been cultured in the presence of 50 νM GABA, 50 μM muscimol, or 150 μM THIP, i.e., under conditions where low-affinity GABA receptors were present on the cells. This inhibitory effect of GABA could be blocked by 120 μM bicuculline and mimicked by 50 μM muscimol or 150 μM THIP whereas 150 μM (-)-baclofen had no effect. It is concluded that GABA acting extracellularly induces formation of low-affinity receptors on cerebellar granule cells and that these receptors are necessary for mediating an inhibitory effect of GABA on evoked glutamate release. The pharmacological properties of these GABA receptors indicate that they belong to the so-called GABAA receptors. 相似文献
18.
A Search for Receptors Modulating the Release of γ-[3 H]Aminobutyric Acid in Rabbit Caudate Nucleus Slices 总被引:3,自引:0,他引:3
Various putative striatal transmitters and related compounds were studied for their effects on the release of gamma-aminobutyric acid (GABA) from slices of the head of the rabbit caudate nucleus. The slices were preincubated with [3H]GABA and then superfused and stimulated electrically at 5 or 20 Hz. Aminooxyacetic acid was present throughout. The main changes observed were the following. The basal and, less consistently, the electrically evoked overflow of [3H]GABA were enhanced by 3,4-dihydroxyphenylethylamine (dopamine), an effect not blocked by cis-flupentixol or domperidone and not mimicked by apomorphine and D1-selective agonists. The electrically evoked overflow was diminished by 5-hydroxytryptamine (serotonin); the inhibition was prevented by methiothepin. The basal but not the electrically evoked overflow was enhanced by carbachol; acetylcholine and nicotine also accelerated the basal outflow whereas oxotremorine caused no consistent change; the effect of carbachol and acetylcholine were blocked by hexamethonium but not by atropine or by tetrodotoxin. These findings indicate that the GABA neurons in the caudate nucleus may be stimulated by dopamine, although the receptor type involved remains unclear; inhibited by serotonin; and stimulated by acetylcholine acting via a nicotine receptor. However, all drug effects observed were relatively small. No evidence was obtained for autoreceptors, alpha 2-adrenoceptors or receptors for opioids, adenosine or substance P at the GABA neurons. 相似文献
19.
Single GABAergic synaptic terminals from rat midbrain exhibit functional P2X and dinucleotide receptors, able to induce GABA secretion 总被引:3,自引:0,他引:3
GABAergic terminals from rat midbrain characterized by immunolocalization of glutamic acid decarboxylase and/or the vesicular inhibitory amino acid transporter respond to ATP or P(1),P(5)-di(adenosine-5') pentaphosphate (Ap(5)A) with an increase in the intrasynaptosomal calcium concentration measured by a microfluorimetric technique in single synaptic terminals. The ATP response is mediated through the activation of P2X receptors with an abundant presence of P2X(3) subunits. Ap(5)A, however, exerts its effects by acting through a different receptor termed the dinucleotide receptor. Both receptors, once activated in the presence of extrasynaptosomal calcium, induce a concentration-dependent GABA release from synaptosomal populations with EC(50) values of 16 and 20 microM for ATP and Ap(5)A, respectively. Specific inhibition of GABA release is obtained with pyridoxal phosphate-6-azophenyl-2',4'-disulphonic acid (80 microM) on the ATP effect and with P(1),P(5)-di(inosine-5') pentaphosphate (100 nM) on the dinucleotide receptor. 相似文献
20.
Increased GABA Release in the Human Brain Cortex as a Potential Pathogenetic Basis of Hyperosmolar Diabetic Coma 总被引:2,自引:0,他引:2
Human cerebral cortical slices preincubated with [3H]GABA, [3H]noradrenaline, or 5-[3H]hydroxytryptamine and superfused with Krebs solution or Mg2+-free Krebs solution were used to investigate the influence of increased D-glucose concentrations on the release of these [3H]-neurotransmitters evoked by high K+ content or NMDA receptor activation, respectively. An increase in level of D-glucose (normal content, 11.1 mM) by 32, 60, and/or 100 mM (a range characteristic for hyperosmolar diabetic coma) increased the [3H]GABA release and inhibited the [3H]noradrenaline release evoked by both methods of stimulation. The K+-induced 5-[3H]hydroxytryptamine release was also inhibited by high D-glucose content. Blockade of GABAB receptors by p-(3-aminopropyl)-p-diethoxymethylphosphinic acid (CGP 35348) attenuated the inhibitory effect of high D-glucose content on the K+-evoked release of [3H]noradrenaline and 5-[3H]hydroxy-tryptamine, suggesting that the effect on monoamine release is, at least to a major part, the result of the increased GABA release and, as a consequence, of an increased GABA concentration at inhibitory GABAB receptors. The membrane-impermeable sorbitol mimicked the increasing effect of D-glucose on [3H]GABA release and its inhibitory effect on 5-[3H]hydroxytryptamine release. However, dimethyl sulfoxide, which is known to permeate rapidly through biological membranes, had no effect at concentrations equiosmolar to D-glucose. It is concluded that a reduction in brain cell volume caused by increased extracellular, compared with cytoplasmic, osmolarity is crucial for the changes in neuronal function observed at high D- glucose and sorbitol content, In view of the fact that GABA is the main inhibitory neurotransmitter in the brain, the increased GABA release may be assumed to contribute to the pathogenesis of hyperosmolar diabetic coma. 相似文献