首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
The serum level of prostate-specific antigen (PSA) is useful as a clinical marker for diagnosis and assessment of the progression of prostate cancer, and in evaluating the effectiveness of treatment. We characterized four Sp1/Sp3 binding sites in the proximal promoter of the PSA gene. In a luciferase assay, these sites contributed to the basal promoter activity in prostate cancer cells. In an electrophoretic mobility shift assay and chromatin immunoprecipitation assay, we confirmed that Sp1 and Sp3 bind to these sites. Overexpression of wild-type Sp1 and Sp3 further upregulated the promoter activity, whereas overexpression of the Sp1 dominant-negative form or addition of mithramycin A significantly reduced the promoter activity and the endogenous mRNA level of PSA. Among the four binding sites, a GC box located at nucleotides -53 to -48 was especially critical for basal promoter activity. These results indicate that Sp1 and Sp3 are involved in the basal expression of PSA in prostate cancer cells.  相似文献   

6.
7.
8.
A hallmark of ischemic/reperfusion injury is a change in subunit composition of synaptic 2‐amino‐3‐(3‐hydroxy‐5‐methylisoazol‐4‐yl)propionic acid receptors (AMPARs). This change in AMPAR subunit composition leads to an increase in surface expression of GluA2‐lacking Ca2+/Zn2+ permeable AMPARs. These GluA2‐lacking AMPARs play a key role in promoting delayed neuronal death following ischemic injury. At present, the mechanism(s) responsible for the ischemia/reperfusion‐induced subunit composition switch and degradation of the GluA2 subunit remain unclear. In this study, we investigated the role of NADPH oxidase, and its importance in mediating endocytosis and subsequent degradation of the GluA2 AMPAR subunit in adult rat hippocampal slices subjected to oxygen–glucose deprivation/reperfusion (OGD/R) injury. In hippocampal slices pre‐treated with the NADPH oxidase inhibitor apocynin attenuated OGD/R‐mediated sequestration of GluA2 and GluA1 as well as prevent the degradation of GluA2. We provide compelling evidence that NADPH oxidase mediated sequestration of GluA1‐ and GluA2‐ involved activation of p38 MAPK. Furthermore, we demonstrate that inhibition of NADPH oxidase blunts the OGD/R‐induced association of GluA2 with protein interacting with C kinase‐1. In summary, this study identifies a novel mechanism that may underlie the ischemia/reperfusion‐induced AMPAR subunit composition switch and a potential therapeutic target.

  相似文献   


9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
In this study, we delineated the molecular mechanisms that modulate Dp71 expression during neuronal differentiation, using the N1E‐115 cell line. We demonstrated that Dp71 expression is up‐regulated in response to cAMP‐mediated neuronal differentiation of these cells, and that this induction is controlled at promoter level. Functional deletion analysis of the Dp71 promoter revealed that a 5′‐flanking 159‐bp DNA fragment that contains Sp1 and AP2 binding sites is necessary and sufficient for basal expression of this TATA‐less promoter, as well as for its induction during neuronal differentiation. Electrophoretic mobility shift and chromatin immunoprecipitation assays revealed that Sp1 and AP2α bind to their respective DNA elements within the Dp71 basal promoter. Overall, mutagenesis assays on the Sp1 and AP2 binding sites, over‐expression of Sp1 and AP2α, as well as knock‐down experiments on Sp1 and AP2α gene expression established that Dp71 basal expression is controlled by the combined action of Sp1 and AP2α, which act as activator and repressor, respectively. Furthermore, we demonstrated that induction of Dp71 expression in differentiated cells is the result of the maintenance of positive regulation exerted by Sp1, as well as of the loss of AP2α binding, which ultimately releases the promoter from repression.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号