首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
We have previously demonstrated that genetic ablation of cationic amino acid transporter 2 (Cat2) significantly inhibits nitric oxide (NO) production by inducible nitric oxide synthase (iNOS) in activated macrophages. Here we report that iNOS activity is impaired by 84% in activated Cat2-deficient astrocytes. Cat2 ablation appears to reduce astrocyte NO synthesis by decreasing the uptake of the sole precursor, arginine, as well as by reducing the expression of iNOS following activation. Excessive or dysregulated NO production by activated astrocytes and other CNS cell types has been implicated in the pathogenesis of neurological disorders. Our results support the idea that manipulation of CAT2 transporter function might be useful for the therapeutic modulation of iNOS activity.  相似文献   

2.
Luo CX  Zhu XJ  Zhou QG  Wang B  Wang W  Cai HH  Sun YJ  Hu M  Jiang J  Hua Y  Han X  Zhu DY 《Journal of neurochemistry》2007,103(5):1872-1882
Nitric oxide (NO), a free radical with signaling functions in the CNS, is implicated in some developmental processes, including neuronal survival, precursor proliferation, and differentiation. However, neuronal nitric oxide synthase (nNOS) -derived NO and inducible nitric oxide synthase (iNOS) -derived NO play opposite role in regulating neurogenesis in the dentate gyrus after cerebral ischemia. In this study, we show that focal cerebral ischemia reduced nNOS expression and enzymatic activity in the hippocampus. Ischemia-induced cell proliferation in the dentate gyrus was augmented in the null mutant mice lacking nNOS gene (nNOS−/−) and in the rats receiving 7-nitroindazole, a selective nNOS inhibitor, after stroke. Inhibition of nNOS ameliorated ischemic injury, up-regulated iNOS expression, and enzymatic activity in the ischemic hippocampus. Inhibition of nNOS increased and iNOS inhibitor decreased cAMP response element-binding protein phosphorylation in the ipsilateral hippocampus in the late stage of stroke. Moreover, the effects of 7-nitroindazole on neurogenesis after ischemia disappeared in the null mutant mice lacking iNOS gene (iNOS−/−). These results suggest that reduced nNOS is involved in ischemia-induced hippocampal neurogenesis by up-regulating iNOS expression and cAMP response element-binding protein phosphorylation.  相似文献   

3.
4.
Since NO production by NOS-2 made by astrocytes activated by proinflammatory cytokines contributes to the killing of neurons in variously damaged human brains, knowing the mechanisms responsible for NOS-2 expression should contribute to developing effective therapeutics. The expression and activation of NOS-2 in normal adult human cerebral cortical astrocytes treated with three proinflammatory cytokines, IL-1beta, TNF-alpha, and IFN-gamma, are driven by two separable mechanisms. NOS-2 expression requires a burst of p38 MAPK activity, while the activation of the resulting enzyme protein requires MEK/ERK-dependent BH4 (tetrahydrobiopterin) synthesis between 24 and 24.5 h after adding the cytokines to the culture medium. Here we show that NOS-2 expression in the activated astrocytes requires that the culture medium contain 1.8 mM Ca2+, but it is unaffected by inhibiting calcium-sensing receptors (CASRs) with NPS 89636. However, NOS-2 activation is inhibited by NPS 89626 during the MEK/ERK-dependent stage between 24 and 24.5 h after adding the cytokines, and this inhibition can be overridden by exogenous BH4. Therefore, NOS-2 expression and the subsequent BH4-dependent NOS-2-activation in human astrocytes need 1.8 mM Ca2+ to be in the culture medium, while NOS-2 activation also needs functional CASRs between 24 and 24.5 h after cytokine addition. These findings raise the possibility that calcilytic drugs prevent NO-induced damage and death of human neurons.  相似文献   

5.
Triptolide (TP),a traditional Chinese medicine,has been reported to be effective in thetreatment of autoimmune diseases and exerting antineoplastic activity in several human tumor cell lines.Thisstudy investigates the antitumor effect of TP in human colon cancer cells (SW114) and myelocytic leukemia(K562),and elucidates the possible molecular mechanism involved.SW114 and K562 cells were treatedwith different doses of TP (0,5,10,20,or 50 ng/ml).The cell viability was assessed by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT). Results demonstrated that TP inhibited the proliferation ofboth tumor cell lines in a dose-dependent manner.To further investigate its mechanisms,the productsprostaglandin E_2 (PGE2) and nitric oxide (NO) were measured by enzyme-linked immunosorbent assay(ELISA).Our data showed that TP strongly inhibited the production of NO and PGE_2. Consistent with theseresults,the expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) was up-regulatedboth at the mRNA level and the protein expression level,as shown by real-time RT-PCR and Westernblotting.These results indicated that the inhibition of the inflammatory factor COX-2 and iNOS activitycould be involved in the antitumor mechanisms of TP.  相似文献   

6.
Increased l-Arg (Arg) uptake to astrocytes and neurons is thought to contribute to enhanced nitric oxide (NO) synthesis and oxidative/nitrosative stress associated with hyperammonemia (HA). Recently we had shown that HA increases the expression in the brain of y(+)LAT2, an isoform of the y(+)L heteromeric transporter which promotes [(3)H]Arg efflux form brain cells in the presence of l-glutamine (Gln) (Zielińska et al., 2011). In this study, we demonstrate that a significant proportion of [(3)H]Arg uptake to cultured cortical astrocytes is likewise mediated by system y(+)L, in addition to the uptake showing characteristics of systems y(+), B(0+) and b(0+). However, stimulation of [(3)H]Arg uptake by treatment with 5mM ammonium chloride ("ammonia") for 48h could be solely ascribed to the y(+)L-mediated component of the uptake. Ammonia treatment increased the expression of the brain specific y(+)L isoform, y(+)LAT2, both at the mRNA and protein level, and silencing of the Slc7a6 gene coding for y(+)LAT2 protein specifically reduced the ammonia-induced [(3)H]Arg uptake. This study suggests an important role of y(+)LAT2 in the modulation of NO synthesis in the ammonia-exposed astrocytes.  相似文献   

7.
Butein has been reported to exert anti-inflammatory effect but the possible mechanism involved is still unclear. Here, we report the inhibitory effect of butein on nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) gene expression. Butein also inhibited the induction of tumor necrosis factor-alpha and cyclooxygenase 2 by LPS. To further investigate the mechanism responsible for the inhibition of iNOS gene expression by butein, we examined the effect of butein on LPS-induced nuclear factor-kappaB (NF-kappaB) activation. The LPS-induced DNA binding activity of NF-kappaB was significantly inhibited by butein, and this effect was mediated through inhibition of the degradation of inhibitory factor-kappaB and phosphorylation of Erk1/2 MAP kinase. Furthermore, increased binding of the osteopontin alphavbeta3 integrin receptor by butein may explain its inhibitory effect on LPS-mediated NO production. Taken together, these results suggest that butein inhibits iNOS gene expression, providing possible mechanisms for its anti-inflammatory action.  相似文献   

8.
Alterations of nitric oxide contribute to post‐flight orthostatic intolerance. The aim of this study was to investigate the changes of inducible nitric oxide synthase (iNOS) and the mechanisms underlying regulation of iNOS by simulated microgravity in human umbilical vein endothelial cells (HUVECs). Clinorotation, a simulated‐model of microgravity, increased iNOS expression and promoter activity in HUVECs. The transactivations of NF‐κB and AP‐1 were suppressed by 24 h clinorotation. A key role for AP‐1, but not NF‐κB in the regulation of iNOS was shown. (1) PDTC, a NF‐κB inhibitor, had no effect on clinorotation upregulation of iNOS. (2) SP600125, a JNK‐specific inhibitor, which resulted in inhibition of AP‐1 activity, enhanced the iNOS expression and promoter activity in clinorotation. (3) Overexpression of AP‐1 remarkably attenuated the upregulation effect of clinorotation. These findings indicate that clinorotation upregulates iNOS in HUVECs by a mechanism dependent on suppression of AP‐1, but not NF‐κB. These results support a key role for AP‐1 in the signaling of postflight orthostatic intolerance. J. Cell. Biochem. 107: 357–363, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
Although interferon (IFN)-beta is firmly established as a therapeutic agent for multiple sclerosis, information regarding its role in astrocyte cytokine production is limited. In primary cultures of human astrocytes, we determined the effects of IFN-beta on astrocyte cytokine [tumor necrosis factor-alpha (TNF-alpha) and interleukin (IL)-6] and inducible nitric oxide synthase (iNOS) expression by ribonuclease protection assay and ELISA. We found that IFN-beta inhibited astrocyte cytokine/iNOS induced by IL-1 plus IFN-gamma, but in the absence of IFN-gamma, IFN-beta enhanced IL-1-induced cytokine/iNOS expression. Electrophoretic mobility shift analysis (EMSA) demonstrated that IFN-gamma induced sustained IFN-gamma-activated sequence (GAS) binding, while IFN-beta induced transient GAS binding. When used together, IFN-beta inhibited IFN-gamma-induced GAS binding activity. Nuclear factor-kappa B (NF-kappaB) activation was not altered by either IFNs, whereas IFN stimulated response element (ISRE) was only activated by IFN-beta and not IFN-gamma. These results suggest that IFN-beta can both mimic and antagonize the effect of IFN-gamma by modulating induction of nuclear GAS binding activity. Our results demonstrating differential regulation of astrocyte cytokine/iNOS induction by IFN-beta are novel and have implications for inflammatory diseases of the human CNS.  相似文献   

10.
Several natural flavonoids have been demonstrated to perform some beneficial biological activities, however, higher-effective concentrations and poor-absorptive efficacy in body of flavonoids blocked their practical applications. In the present study, we provided evidences to demonstrate that flavonoids rutin, quercetin, and its acetylated product quercetin pentaacetate were able to be used with nitric oxide synthase (NOS) inhibitors (N-nitro-L-arginine (NLA) or N-nitro-L-arginine methyl ester (L-NAME)) in treatment of lipopolysaccharide (LPS) induced nitric oxide (NO) and prostaglandin E2 (PGE2) productions, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) gene expressions in a mouse macrophage cell line (RAW 264.7). The results showed that rutin, quercetin, and quercetin pentaacetate-inhibited LPS-induced NO production in a concentration-dependent manner without obvious cytotoxic effect on cells by MTT assay using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide as an indicator. Decrease of NO production by flavonoids was consistent with the inhibition on LPS-induced iNOS gene expression by western blotting. However, these compounds were unable to block iNOS enzyme activity by direct and indirect measurement on iNOS enzyme activity. Quercetin pentaacetate showed the obvious inhibition on LPS-induced PGE2 production and COX-2 gene expression and the inhibition was not result of suppression on COX-2 enzyme activity. Previous study demonstrated that decrease of NO production by L-arginine analogs effectively stimulated LPS-induced iNOS gene expression, and proposed that stimulatory effects on iNOS protein by NOS inhibitors might be harmful in treating sepsis. In this study, NLA or L-NAME treatment stimulated significantly on LPS-induced iNOS (but not COX-2) protein in RAW 264.7 cells which was inhibited by these three compounds. Quercetin pentaacetate, but not quercetin and rutin, showed the strong inhibitory activity on PGE2 production and COX-2 protein expression in NLA/LPS or L-NAME/LPS co-treated RAW 264.7 cells. These results indicated that combinatorial treatment of L-arginine analogs and flavonoid derivates, such as quercetin pentaacetate, effectively inhibited LPS-induced NO and PGE2 productions, at the same time, inhibited enhanced expressions of iNOS and COX-2 genes.  相似文献   

11.
Nitric oxide (NO) can regulate osteoblast activities. This study was aimed to evaluate the protective effects of pretreatment with sodium nitroprusside (SNP) as a source of NO on hydrogen peroxide‐induced osteoblast insults and its possible mechanisms. Exposure of human osteosarcoma MG63 cells to hydrogen peroxide significantly increased cellular oxidative stress, but decreased ALP activity and cell viability, inducing cell apoptosis. Pretreatment with 0.3 mM SNP significantly lowered hydrogen peroxide‐induced cell insults. Treatment of human MG63 cells with hydrogen peroxide inhibited Bcl‐2 mRNA and protein production, but pretreatment with 0.3 mM SNP significantly ameliorated such inhibition. Sequentially, hydrogen peroxide decreased the mitochondrial membrane potential, but increased the levels of cytochrome c and caspase‐3 activity. Pretreatment with 0.3 mM SNP significantly lowered such alterations. Exposure to hydrogen peroxide decreased Runx2 mRNA and protein syntheses. However, pretreatment with 0.3 mM SNP significantly lowered the suppressive effects. Runx2 knockdown using RNA interference inhibited Bcl‐2 mRNA production in human MG63 cells. Protection of pretreatment with 0.3 mM SNP against hydrogen peroxide‐induced alterations in ALP activity, caspase‐3 activity, apoptotic cells, and cell viability were also alleviated after administration of Runx2 small interference RNA. Thus, this study shows that pretreatment with 0.3 mM SNP can protect human MG63 cells from hydrogen peroxide‐induced apoptotic insults possibly via Runx2‐involved regulation of bcl‐2 gene expression. J. Cell. Biochem. 108: 1084–1093, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
13.
Tranilast (N-[3′,4′-dimethoxycinnamonyl] anthranilic acid), an orally active anti-allergic drug, is reported to exert the anti-inflammatory effects, but the underlying mechanisms that could explain the anti-inflammatory actions of tranilast remain largely unknown. Here, we found that tranilast induces heme oxygenase-1 (HO-1) expression through the extracellular signal-regulated kinase-1/2 (ERK1/2) pathway in RAW264.7 macrophages. Tranilast suppressed cyclooxygenase-2 (COX-2) and inducible nitric oxide (NO) synthase (iNOS) expression, and thereby reduced COX-2-derived prostaglandin E2 (PGE2) and iNOS-derived NO production in lipopolysaccharide (LPS)-stimulated macrophages. Similarly, tranilast diminished tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) production. Interestingly, the effects of tranilast on LPS-induced PGE2, NO, TNF-α, and IL-1β production were partially reversed by the HO-1 inhibitor tin protoporphyrin, suggesting that tranilast-induced HO-1 expression is at least partly responsible for the resulting anti-inflammatory effects of the drug. Thus, HO-1 expression via ERK1/2 activation may be at least one of the possible mechanisms explaining the anti-inflammatory actions of tranilast.  相似文献   

14.
Nitric oxide (NO) from astrocytes is one of the signalers used by the brain's extensive glial-neuronal-vascular network, but its excessive production by pro-inflammatory cytokine-stimulated glial cells can be cytodestructive. Here, we show how three pro-inflammatory cytokines (IL-1beta, TNF-alpha, and IFN-gamma) together stimulated the activation, but not the prior expression, of NOS-2 protein via a mechanism involving MEK-ERKs protein kinases in astrocytes from adult human cerebral temporal cortex. The cytokines triggered a transient burst of p38 MAPK activity and the production of NOS-2 mRNA which were followed by bursts of MEK-ERK activities, synthesis of the NOS-2 co-factor tetrahydrobiopterin (BH(4)), a build-up of NOS-2 protein and from it active NOS-2 enzyme. Selectively inhibiting MEK1/MEK2, but not the earlier burst of p38 MAPK activity, with a brief exposure to U0126 between 24 and 24.5 h after adding the cytokine triad affected neither NOS-2 expression nor NOS-2 protein accumulation but stopped BH(4) synthesis and the assembly of the NOS-2 protein into active NOS-2 enzyme. The complete blockage of active NOS-2 production by the brief exposure to U0126 was bypassed by simply adding BH(4) to the culture medium. Therefore, this cytokine triad triggered two completely separable, tandem operating mechanisms in normal human astrocytes, the first being NOS-2 gene expression and accumulation of NOS-2 protein and the second being the synthesis of the BH(4) factor needed to dimerize the NOS-2 protein into active, NO-making NOS-2 enzyme.  相似文献   

15.
The effect of 4-(4-fluorophenyl)-2-methyl-6-(5-piperidinopentyloxy)pyrimidine hydrochloride (NS-7), a neuroprotective compound, on Ca2+ channels involving the activation of nitric oxide synthase (NOS) was investigated in primary neuronal culture. The NOS activity was estimated from the cyclic GMP formation. The KCl (25 mM)-stimulated cyclic GMP formation was totally abolished by a combined treatment with nifedipine and omega-agatoxin IVA (omega-Aga), whereas spontaneous cyclic GMP formation was partially but significantly reduced by nifedipine. In contrast to nifedipine, NS-7 blocked KCl-stimulated cyclic GMP formation without affecting spontaneous cyclic GMP formation. Subsequently, the effects of nifedipine and NS-7 on L-type Ca2+ channels were compared. Nifedipine blocked equally the cyclic GMP formation stimulated by various concentrations of (+/-)-Bay K 8644, whereas NS-7 inhibited the maximal response without affecting the responses induced by low concentrations of (+/-)-Bay K 8644. The effects of NS-7 on L-type and P/Q-type Ca2+ channels involving KCl-stimulated cyclic GMP formation were subsequently examined. NS-7 suppressed the KCl-stimulated cyclic GMP formation measured in the presence of omega-Aga to almost the same extent as that determined in the presence of nifedipine. In contrast, NS-7 had no influence on ionomycin-induced enhancement of cyclic GMP formation. Finally, NS-7 reversed KCl-induced elevation of the intracellular free Ca2+ concentration. These findings suggest that NS-7 inhibits NOS activation in primary neuronal culture by reducing Ca2+ entry through L-type and P/Q-type Ca2+ channels, in which the inhibition is largely dependent on Ca2+ channel activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号