首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Jeon JS  Lee S  An G 《Molecules and cells》2008,26(5):474-480
OsMADS1 is a rice MADS box gene necessary for floral development. To identify the key cis-regulatory regions for its expression, we utilized transgenic rice plants expressing GUS fusion constructs. Histochemical analysis revealed that the 5.7-kb OsMADS1 intragenic sequences, encompassing exon 1, intron 1, and a part of exon 2, together with the 1.9-kb 5' upstream promoter region, are required for the GUS expression pattern that coincides with flower-preferential expression of OsMADS1. In contrast, the 5' upstream promoter sequence lacking this intragenic region caused ectopic expression of the reporter gene in both vegetative and reproductive tissues. Notably, incorporation of the intragenic region into the CaMV35S promoter directed the GUS expression pattern similar to that of the endogenous spatial expression of OsMADS1 in flowers. In addition, our transient gene expression assay revealed that the large first intron following the CaMV35S minimal promoter enhances flower-preferential expression of GUS. These results suggest that the OsMADS1 intragenic sequence, largely intron 1, contains a key regulatory region(s) essential for expression.  相似文献   

2.
Analysis of rice Act1 5' region activity in transgenic rice plants.   总被引:7,自引:0,他引:7       下载免费PDF全文
W Zhang  D McElroy    R Wu 《The Plant cell》1991,3(11):1155-1165
The 5' region of the rice actin 1 gene (Act1) has been developed as an efficient regulator of foreign gene expression in transgenic rice plants. To determine the pattern and level of rice Act1 5' region activity, transgenic rice plants containing the Act1 5' region fused to a bacterial beta-glucuronidase (Gus) coding sequence were generated. Two independent clonal lines of transgenic rice plants were analyzed in detail. Quantitative analysis showed that tissue from these transgenic rice plants have a level of GUS protein that represents as much as 3% of total soluble protein. We were able to demonstrate that Act1-Gus gene expression is constitutive throughout the sporophytic and gametophytic tissues of these transgenic rice plants. Plants from one transgenic line were analyzed for the segregation of GUS activity in pollen by in situ histochemical staining, and the inheritance and stability of Act1-Gus expression were assayed in subsequently derived progeny plants.  相似文献   

3.
4.
5.
6.
7.
Activity of a maize ubiquitin promoter in transgenic rice   总被引:27,自引:0,他引:27  
We have used the maize ubiquitin 1 promoter, first exon and first intron (UBI) for rice (Oryza sativa L. cv. Taipei 309) transformation experiments and studied its expression in transgenic calli and plants. UBI directed significantly higher levels of transient gene expression than other promoter/intron combinations used for rice transformation. We exploited these high levels of expression to identify stable transformants obtained from callus-derived protoplasts co-transfected with two chimeric genes. The genes consisted of UBI fused to the coding regions of the uidA and bar marker genes (UBI:GUS and UBI:BAR). UBI:GUS expression increased in response to thermal stress in both transfected protoplasts and transgenic rice calli. Histochemical localization of GUS activity revealed that UBI was most active in rapidly dividing cells. This promoter is expressed in many, but not all, rice tissues and undergoes important changes in activity during the development of transgenic rice plants.  相似文献   

8.
9.
Introns are important sequence elements that modulate the expression of genes. Using the GUS reporter gene driven by the promoter of the rice (Oryza sativa L.) polyubiquitin rubi3 gene, we investigated the effects of the 5' UTR intron of the rubi3 gene and the 5' terminal 27 bp of the rubi3 coding sequence on gene expression in stably transformed rice plants. While the intron enhanced GUS gene expression, the 27-bp fused to the GUS coding sequence further augmented GUS expression level, with both varying among different tissues. The intron elevated GUS gene expression mainly at mRNA accumulation level, but also stimulated enhancement at translational level. The enhancement on mRNA accumulation, as determined by realtime quantitative RT-PCR, varied remarkably with tissue type. The augmentation by the intron at translational level also differed by tissue type, but to a lesser extent. On the other hand, the 27-bp fusion further boosted GUS protein yield without affecting mRNA accumulation level, indicating stimulation at translation level, which was also affected by tissue type. The research revealed substantial variation in the magnitudes of intron-mediated enhancement of gene expression (IME) among tissues in rice plants and the importance of using transgenic plants for IME studies.  相似文献   

10.
11.
12.
13.
Cryopreserved callus: a source of protoplasts for rice transformation   总被引:5,自引:0,他引:5  
We cryopreserved whole rice calli (Oryza sativa L cv Taipei 309) to investigate the ability of the surviving cells to regenerate plants and yield protoplasts competent for genetic transformation. Four out of six callus lines cryopreserved after four months in culture contained small sectors able to continue cell division and subsequently regenerate fertile plants. Both cryopreservation efficiency and regeneration ability decreased when using eight month old cultures. High yields of protoplasts were obtained from different cryopreserved callus lines. Protoplasts were transfected with chimeric genes consisting of the maize ubiquitin 1 promoter, first exon and first intron fused to the coding region of either the GUS or BAR marker genes. Levels of transient gene expression from both marker genes were similar to those previously obtained using protoplasts derived from callus that had not been frozen. Stable transformants were selected by their resistance to Bialaphos and could be identified with the pH indicator chlorophenol red. Southern blot analysis confirmed the integration of the BAR gene into the rice genome. Therefore, cryopreservation does not affect the ability of rice cells to integrate and express foreign genes.Abbreviations BA 6-benzylaminopurine - BAR Bialaphos-resistance - CaMV cauliflower mosaic virus - CPS cryoprotectant solution - CR chlorophenol red 2,4-D 2,4-dichlorophenoxyacetic acid - DMSO dimethyl sulfoxide - FW fresh weight - GUS -glucuronidase - IOD interoptical density - MS Murashige and Skoog - MU methyl umbelliferone - NAA naphthaleneacetic acid - PAT phosphinothricin acetyl transferase - PEG polyethylene glycol - TTC 2,3,5, triphenyltetrazolium chloride - UBI maize ubiquitin 1 promoter, first exon and first intron  相似文献   

14.
Expression Enhancement of a Rice Polyubiquitin Gene Promoter   总被引:11,自引:0,他引:11  
An 808 bp promoter from a rice polyubiquitin gene, rubi3, has been isolated. The rubi3 gene contained an open reading frame of 1140 bp encoding a pentameric polyubiquitin arranged as five tandem, head-to-tail repeats of 76 aa. The 1140 bp 5′ UTR intron of the gene enhanced its promoter activity in transient expression assays by 20-fold. Translational fusion of the GUS reporter gene to the coding sequence of the ubiquitin monomer enhanced GUS enzyme activity in transient expression assays by 4.3-fold over the construct containing the original rubi3 promoter (including the 5′ UTR intron) construct. The enhancing effect residing in the ubiquitin monomer coding sequence has been narrowed down to the first 9 nt coding for the first three amino acid residues of the ubiquitin protein. Mutagenesis at the third nucleotide of this 9 nt sequence still maintains the enhancing effect, but leads to translation of the native GUS protein rather than a fusion protein. The resultant 5′ regulatory sequence, consisting of the rubi3 promoter, 5′ UTR exon and intron, and the mutated first 9 nt coding sequence, has an activity nearly 90-fold greater than the rubi3 promoter only (without the 5′ UTR intron), and 2.2-fold greater than the maize Ubi1 gene promoter (including its 5′ UTR intron). The newly created expression vector is expected to enhance transgene expression in monocot plants. Considering the high conservation of the polyubiquitin gene structure in higher plants, the observed enhancement in gene expression may apply to 5′ regulatory sequences of other plant polyubiquitin genes.  相似文献   

15.
16.
17.
水稻OsBP-73基因表达需要其内含子参与   总被引:7,自引:0,他引:7  
该实验室以前的研究表明,水稻OsBP-73基因含有2个外显子和1个长度为2 471 bp的内含子.该文报告用OsBP-73基因ATG翻译起始密码子(在第1外显子中)上游序列(1- 818~ 215)与GUS基因构成嵌合质粒pRSSl,将该质粒转化水稻后,在抗性愈伤组织和转基因植株中未能检测到GUS基因的表达.只有用含有完整的内含子及其上游序列(1 818~ 2 844)与GUS基因构成嵌合质粒(p13GNF)时,才能在p13GNF的转基因抗性愈伤组织和植株中检测到GUS基因的表达.实验还证明,单是内含子序列并不能驱动GUS基因在转基因水稻中表达.由此推测:OsBP-73基因的启动子序列驱动基因表达时,需要基因内含子的参与.  相似文献   

18.
Multiple protein factors bind to a rice glutelin promoter region.   总被引:6,自引:1,他引:5       下载免费PDF全文
S Y Kim  R Wu 《Nucleic acids research》1990,18(23):6845-6852
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号