首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
本文综述了防御素在重组表达与制备方面的主要进展, 包括在原核细胞表达时宿主菌、载体、表达策略的选择, 在酵母等真核细胞中进行重组表达的优缺点, 以及重组防御素纯化研究的现状。本文还概括了当前防御素研发与临床应用面临的主要问题, 将来的研究方向和开发前景。  相似文献   

2.
目的:获取小鼠附睾分泌的防御素Defb48的基因并原核表达、纯化,为研究其功能奠定基础。方法:提取小鼠附睾组织的总RNA,用RT-PCR技术扩增出不含信号肽的Defb48编码序列,将2段Defb48编码序列串联克隆至原核表达载体pET28(a)中,经酶切和测序鉴定正确的重组质粒转化大肠杆菌Rosetta(DE3),IPTG诱导表达重组蛋白;用镍柱进行重组蛋白的纯化,然后进行SDS-PAGE和Western印迹分析鉴定。结果:获得实验所需小鼠附睾分泌的防御素Defb48的基因序列,测序结果与已发表的基因序列一致;在大肠杆菌Rosetta(DE3)中表达了His-Defb48融合蛋白,经Western印迹分析,在相对分子质量18 000处有特异的蛋白条带,镍柱纯化后获得纯度较好的融合蛋白。结论:克隆了小鼠附睾分泌的防御素Defb48基因,并在大肠杆菌Rosetta(DE3)中表达纯化出融合蛋白,为制备其多克隆抗体,进而进一步研究Defb48的功能奠定了基础。  相似文献   

3.
采用PCR扩增大肠杆菌偏好的人α防御素5成熟肽(mHD-5)密码子序列, 并将其克隆至pMAL-p2x质粒, 构建pMAL-p2x-mHD-5表达载体, 转化大肠杆菌BL21(DE3), 诱导表达, SDS-PAGE分析目的蛋白表达量并优化表达条件。经亲和层析、酶切和离子交换层析等方法分离、纯化重组mHD-5(rmHD-5)多肽。采用浊度法测定rmHD-5对细菌的抑制活性。通过优化表达条件, 获得约30%的可溶性目的蛋白表达量, 并成功纯化rmHD-5。rmHD-5对大肠杆菌标准菌株(ATCC25922)具有较强的抑制活性, 在终浓度为62.5mg/mL时, 90%以上的细胞被抑制。结果表明采用可溶性融合表达策略, 在原核表达系统中诱导表达并纯化具有生物活性的防御素是可行的途径之一。  相似文献   

4.
采用PCR扩增大肠杆菌偏好的人α防御素5成熟肽(mHD-5)密码子序列, 并将其克隆至pMAL-p2x质粒, 构建pMAL-p2x-mHD-5表达载体, 转化大肠杆菌BL21(DE3), 诱导表达, SDS-PAGE分析目的蛋白表达量并优化表达条件。经亲和层析、酶切和离子交换层析等方法分离、纯化重组mHD-5(rmHD-5)多肽。采用浊度法测定rmHD-5对细菌的抑制活性。通过优化表达条件, 获得约30%的可溶性目的蛋白表达量, 并成功纯化rmHD-5。rmHD-5对大肠杆菌标准菌株(ATCC25922)具有较强的抑制活性, 在终浓度为62.5mg/mL时, 90%以上的细胞被抑制。结果表明采用可溶性融合表达策略, 在原核表达系统中诱导表达并纯化具有生物活性的防御素是可行的途径之一。  相似文献   

5.
β-防御素是斑点叉尾鮰Ietalurus punetaus抵御病原微生物侵染的首要蛋白质免疫因子,其一级结构包含氨基端24个氨基酸组成的信号肽和羧基端43个氨基酸组成的成熟肽,该成熟肽赋予β-防御素的生物学活性。文中首次构建了产斑点叉尾鮰β-防御素的毕赤酵母Pichiapastoris重组菌株,实现了基于真核表达的斑点叉尾鮰β-防御素的生物合成。首先通过RT-PCR从斑点叉尾鮰皮肤中分离β-防御素成熟肽基因"IPBD",将其与表达载体p PICZαA连接并转入毕赤酵母X-33后,获得重组毕赤酵母菌株;经含1 000μg/m L博来霉素的培养基筛选,获得高拷贝重组菌株。以BMM培养基(无氨基氮源培养基)替代BMMY培养基(含氨基氮源培养基),对重组菌株的发酵培养条件进行优化,确定其产斑点叉尾鮰β-防御素的最适条件为:28℃、250 r/min、1.0%甲醇诱导表达96 h。重组菌株产物经镍离子亲和层析获得分子量为5.98k Da的纯化蛋白,基于MALDI-TOF-TOF的质谱分析证明该纯化蛋白为重组IPBD。抑菌活性测定结果表明重组IPBD对革兰氏阳性的金黄色葡萄球菌Staphyloco...  相似文献   

6.
石斑鱼-防御素的酵母表达及其产物抗菌活性分析   总被引:1,自引:0,他引:1  
防御素是一类阳离子抗菌肽。研究从石斑鱼垂体SMART cDNA 文库中扩增出129 bp 石斑鱼-防御素成熟肽序列, 将其克隆到毕赤酵母表达载体pPCIZA 中, 构建了石斑鱼-防御素的真核表达载体, 电击转化毕赤酵母GS115。Western Blot 分析表明石斑鱼-防御素在酵母菌中获得了表达。体外抗菌实验表明纯化的重组蛋白具有抑制大肠杆菌以及嗜水气单胞菌的作用, 但是对革兰氏阳性菌, 如金黄色葡萄球菌和藤黄微球菌的生长没有抑制作用。实验结果表明酵母表达的石斑鱼-防御素能够特异地抑制革兰氏阴性菌的生长。    相似文献   

7.
《生命科学研究》2017,(6):471-476
人α-防御素5(humanα-defensin 5,HD5)是人防御素α家族中发现的抑菌活性最高的多肽。为了探究HD5在酿酒酵母中分泌表达的可行性,首先利用PCR扩增获得酵母菌偏好的HD5核酸序列,构建酿酒酵母表达载体pVT102U/α-HD5,并将该重组质粒转入酿酒酵母S78中,通过营养缺陷筛选获得阳性转化菌株。然后,对重组菌进行发酵培养,取上清液纯化后通过tricine-SDS-PAGE和质谱检测表达产物。最后,利用琼脂扩散法检测表达的HD5的抑菌活性以及其对温度的耐受性,同时通过二倍稀释法检测表达的HD5对大肠杆菌、金黄色葡萄球菌以及沙门氏杆菌的最小完全抑制浓度。结果显示:表达的HD5对大肠杆菌、金黄色葡萄球菌以及沙门氏杆菌均具有明显的抑菌活性。发酵上清冻干粉对金黄色葡萄球菌完全抑制的最小浓度为10 mg/mL,对大肠杆菌和沙门氏杆菌完全抑制的最小浓度为40 mg/mL;且在不同温度处理下,表达的HD5对3种细菌仍具有一定的抑菌作用。上述结果表明具有高抑菌活性的HD5防御素在该重组系统中成功表达。  相似文献   

8.
目的 为了在大肠杆菌中融合表达人β防御素-3基因。方法 根据大肠杆菌对精氨酸密码子使用的偏爱性,设计搭桥引物,并通过PCR扩增法合成了人β防御素的全基因序列,克隆进pGEX-4T-2中构建pGEX-4T-2-hBD-3融合表达载体。将表达载体转化E.coli宿主菌DH5α,进行IPTG诱导表达。将菌体反复冻溶使细胞膜穿孔,释放可溶性蛋白。融合蛋白GST-hBD-3经凝血酶切割。结果 研究得到了重组人防御素蛋白,琼脂孔穴扩散抑菌法检测表明,重组人β防御素3对金黄色葡萄球菌有抗菌活性,抑菌效价为0.843 U。结论 人β防御素-3基因在大肠杆菌中得到了融合表达。  相似文献   

9.
【目的】将猪β防御素2成熟肽基因片段正确整合到酵母基因组染色体上,从而得到稳定的猪β防御素2成熟肽的毕赤酵母表达株。实现猪β防御素2成熟肽的表达。【方法】首先参考酵母偏爱密码子,设计3段引物序列,利用PCR技术扩增得到β防御2成熟肽基因,构建了重组质粒pPIC9k-GST-pBD-2和pPIC9k-pBD-2。将线性化的重组质粒电转化到毕赤酵母KM71细胞中。最后筛选得到酵母阳性克隆,通过不断调节表达条件,实现猪β防御素2成熟肽的表达。【结果】将GST-pBD-2基因序列和pBD-2基因序列分别成功整合到酵母KM71基因组中,重组毕赤酵母工程菌构建成功;重组酵母蛋白GST-pBD-2和PBD-2都成功获得了表达;PBD-2成熟肽表达上清对猪霍乱沙门氏菌弱毒株C500有一定的抑制作用。【结论】获得表达pBD-2成熟肽的酵母菌株,本实验是用真核细胞表达pBD-2成熟肽的一次探索,为后续大量表达pBD-2成熟肽方法的研究打下了基础。  相似文献   

10.
抗菌肽是昆虫感染细菌后,由血细胞及脂肪细胞在瞬时分泌的抗菌物质。具有广谱抗菌活性和抑杀耐药菌株等优点。抗菌肽不仅抗菌谱广,而且对某些真菌、原虫、病毒及肿瘤有一定的杀灭和抑制作用,还能加速免疫和伤口愈合过程。防御素是一类在自然界中广泛存在的、具有微生物抗性的小分子抗菌肽。利用PCR技术,以果蝇总DNA为模板,扩增出两端加入了连接接头的防御素基因,将接头处理成粘性末端,将防御素基因与分泌型酵母表达载体pHBM905B重组,构建重组酵母表达载体pHBM905B/defensin,经"三明治"夹心平板筛选及菌落PCR鉴定证明目的基因已整合入酵母染色体中。挑选阳性克隆经甲醇诱导表达,以SDS-PAGE电泳对表达产物进行分析,证明表达蛋白的相对分子量约为10kD,与预期结果一致。用琼脂糖扩散法检测上清液的生物学活性,可以观察到明显的抑菌圈,显示其具有较强的抗菌活性。同时表达产物有极强的热稳定性,展示了诱人的应用前景,为进一步的开发研究奠定了基础。  相似文献   

11.
12.
Human β-defensin 3 (DEFB103) is a recently identified small cysteine-rich cationic peptide expressed ubiquitously upon local microbial invasion. A number of accumulating evidences indicate that this peptide is involved in many biological processes, including microbicidal activities, chemoattraction, and immunomodulation. In this article, we describe a novel approach through which we performed the expression and purification of the recombinant DEFB103 peptide in Escherichia coli (E. coli) based on the pTWIN1 expression system. This approach does not introduce any extra residues to the peptide product, and also eliminates the requirement of removing the fusion tag by exogenous proteases. A high yield of 112 mg of soluble fusion DEFB103 was obtained in 1 liter of Luria-Bertani (LB) medium. By one-step affinity chromatography and on-column, auto-cleavage of the fusion tag, the mature DEFB103 peptide was produced with a yield of 30 mg/L LB. The purified DEFB103 peptide demonstrated strong antimicrobial activities against E. coli, S. aureus and C. albicans, which were representatives of Gram-negative and Gram-positive bacteria and fungi, respectively. Using this novel approach, we have successfully expressed and purified several human defensins with significant bioactivities. Our work may be helpful for structural and functional studies of other human defensins, and also for the production of human defensins.  相似文献   

13.
Sustained infection and chronic inflammation are the most common features and complex mechanisms of diabetic foot disease. In this study, we examined the expression and functional roles of human endogenous α defensins in diabetic foot ulcer. The expression levels of human α defensins HNP1, HNP3, and HNP4 were significantly higher in the wound center than the edge of diabetic foot ulcers. And the inflammatory cytokine interleukin IL‐8 (IL‐8) was also highly expressed in wound exudates. In human foreskin fibroblasts, these human α defensins were found only slightly to affect IL‐8 expression directly. hemoglobin A1C (HbA1c) is the main clinical indicator of diabetic foot disease. Advanced glycation end products of bovine serum albumin (AGE‐BSA), as HbA1c analogue, was found to promote IL‐8 expression. Human α defensins, in the presence of AGE‐BSA, further significantly promoted IL‐8 expression. These findings showed that human α defensins aggravated the inflammatory response in diabetic foot ulcers patients, providing new insights in to the poor healing of diabetic foot ulcers.  相似文献   

14.
Antimicrobial peptides are a potent group of defense active molecules that have been utilized in developing resistance against a multitude of plant pathogens. Floral defensins constitute a group of cysteine-rich peptides showing potent growth inhibition of pathogenic filamentous fungi especially Fusarium oxysporum in vitro. Full length genes coding for two Petunia floral defensins, PhDef1 and PhDef2 having unique C-terminal 31 and 27 amino acid long predicted prodomains, were overexpressed in transgenic banana plants using embryogenic cells as explants for Agrobacterium-mediated genetic transformation. High level constitutive expression of these defensins in elite banana cv. Rasthali led to significant resistance against infection of Fusarium oxysporum f. sp. cubense as shown by in vitro and ex vivo bioassay studies. Transgenic banana lines expressing either of the two defensins were clearly less chlorotic and had significantly less infestation and discoloration in the vital corm region of the plant as compared to untransformed controls. Transgenic banana plants expressing high level of full-length PhDef1 and PhDef2 were phenotypically normal and no stunting was observed. In conclusion, our results suggest that high-level constitutive expression of floral defensins having distinctive prodomains is an efficient strategy for development of fungal resistance in economically important fruit crops like banana.  相似文献   

15.
Aims:  Production of the recombinant Arabidopsis halleri defensin AhPDF1.1 in a native-like form.
Methods and Results:  Mature AhPDF1.1 cDNA was cloned into pET-28-a(+) and expressed in Escherichia coli Rosetta. After a denaturing extraction, purification by metal affinity chromatography and CNBr cleavage of the His-tag, a protein without extra amino acids at the N-terminus was obtained. An oxidative folding step was then required to renature the protein that was then purified to homogeneity by a C18 HPLC separation. Mass spectroscopy and circular dichroism analyses showed that the recombinant AhPDF1.1 has the expected molecular mass and 3D-structure features of a folded defensin with four-disulfide bridges. The recombinant protein is active against the filamentous fungus Fusarium oxysporum with a minimal inhibitory concentration of 0·6 μmol l−1.
Conclusion:  The proposed purification protocol produces a native-like defensin suitable for tests of new biological roles.
Significance and Impact of the Study:  Plant defensins are essentially known as anti-fungal proteins; however, some unexpected actions on plant cells have recently been discovered. AhPDF1.1, for example, has been shown to confer zinc tolerance. Efficient production of native-like defensins is required to explore the different targets and roles of plant defensins.  相似文献   

16.

Background

X-tox proteins are a family of immune-related proteins only found in Lepidoptera and characterized by imperfectly conserved tandem repeats of several defensin-like motifs. Previous phylogenetic analysis of X-tox genes supported the hypothesis that X-tox have evolved from defensins in a lineage-specific gene evolution restricted to Lepidoptera. In this paper, we performed a protein study in which we asked whether X-tox proteins have conserved the antimicrobial functions of their ancestral defensins and have evolved as defensin reservoirs.

Methodology/Principal Findings

We followed the outcome of Spod-11-tox, an X-tox protein characterized in Spodoptera frugiperda, in bacteria-challenged larvae using both immunochemistry and antimicrobial assays. Three hours post infection, the Spod-11-tox protein was expressed in 80% of the two main classes of circulating hemocytes (granulocytes and plasmatocytes). Located in secretory granules of hemocytes, Spod-11-tox was never observed in contact with microorganisms entrapped within phagolyzosomes showing that Spod-11-tox is not involved in intracellular pathogen killing. In fact, the Spod-11-tox protein was found to be secreted into the hemolymph of experimentally challenged larvae. In order to determine antimicrobial properties of the Spod-11-tox protein, it was consequently fractionated according to a protocol frequently used for antimicrobial peptide purification. Over the course of purification, the anti-Spod-11-tox immunoreactivity was found to be dissociated from the antimicrobial activity. This indicates that Spod-11-tox is not processed into bioactive defensins in response to a microbial challenge.

Conclusions/Significance

Altogether, our results show that X-tox proteins have not evolved as defensin reservoirs and have lost the antimicrobial properties of the ancestral insect defensins. The lepidopteran X-tox protein family will provide a valuable and tractable model to improve our knowledge on the molecular evolution of defensins, a class of innate immune effectors largely distributed over the three eukaryotic kingdoms.  相似文献   

17.
防御素的生物学特性及其抗病基因工程   总被引:1,自引:0,他引:1  
Fu LB  Yu JL  Liu WH 《遗传》2011,33(5):512-519
防御素是一种富含半胱氨酸的小分子多肽,对细菌等微生物具有广谱抗性,且作用机制特殊。迄今为止,国内外在防御素方面进行了大量的研究,已经从各类生物体中分离出不同种类的防御素,并在基因工程和医药领域呈现广泛的应用前景。文章对防御素的分类、生物学特性,包括哺乳动物α-、β-、θ-防御素、昆虫以及植物防御素的分子结构及抗菌活性进行了综述,阐述了防御素的膜作用及与细胞内复合物结合的作用机制。总结和归纳了防御素基因的分离、表达研究进展及动、植物防御素基因在抗病基因工程领域的应用,并对防御素在未来的生物制药和植物抗病基因工程方面的应用前景进行了展望。  相似文献   

18.
Six alpha-defensins have been found in humans. These small arginine-rich peptides play important roles in various processes related to host defense, being the effectors and regulators of innate immunity as well as enhancers of adoptive immune responses. Four defensins, called neutrophil peptides 1 through 4, are stored primarily in polymorphonuclear leukocytes. Major sites of expression of defensins 5 and 6 are Paneth cells of human small intestine. So far, only one structure of human alpha-defensin (HNP3) has been reported, and the properties of the intestine defensins 5 and 6 are particularly poorly understood. In this report, we present the high-resolution X-ray structures of three human defensins, 4 through 6, supplemented with studies of their antimicrobial and chemotactic properties. Despite only modest amino acid sequence identity, all three defensins share their tertiary structures with other known alpha- and beta-defensins. Like HNP3 but in contrast to murine or rabbit alpha-defensins, human defensins 4-6 form characteristic dimers. Whereas antimicrobial and chemotactic activity of HNP4 is somewhat comparable to that of other human neutrophil defensins, neither of the intestinal defensins appears to be chemotactic, and for HD6 also an antimicrobial activity has yet to be observed. The unusual biological inactivity of HD6 may be associated with its structural properties, somewhat standing out when compared with other human alpha-defensins. The strongest cationic properties and unique distribution of charged residues on the molecular surface of HD5 may be associated with its highest bactericidal activity among human alpha-defensins.  相似文献   

19.
Identification of a cowpea gamma-thionin with bactericidal activity   总被引:1,自引:0,他引:1  
Antimicrobial peptides are an abundant group of proteinaceous compounds widely produced in the plant kingdom. Among them, the gamma-thionin family, also known as plant defensins, represents one typical family and comprises low molecular mass cysteine-rich proteins, usually cationic and distributed in different plant tissues. Here, we report the purification and characterization of a novel gamma-thionin from cowpea seeds (Vigna unguiculata), named Cp-thionin II, with bactericidal activity against Gram-positive and Gram-negative bacteria. Once the primary structure was elucidated, molecular modelling experiments were used to investigate the multimerization and mechanism of action of plant gamma-thionins. Furthermore, Cp-thionin II was also localized in different tissues in cowpea seedlings during germination in contrasting conditions, to better understand the plant protection processes. The use of plant defensins in the construction of transgenic plants and also in the production of novel drugs with activity against human pathogens is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号