首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Inhibitor of apoptosis proteins (IAPs) prevent apoptosis through direct inhibition of caspases. The serine protease HtrA2/Omi has an amino-terminal IAP interaction motif like that found in Reaper, which displaces IAPs from caspases, leading to enhanced caspase activity. The cell death-promoting properties of HtrA2/Omi are not only exerted through its capacity to oppose IAP inhibition of caspases but also through its integral serine protease activity. We have used peptide libraries to determine the optimal substrate sequence for cleavage by HtrA2 and also the preferred binding sequence for its PDZ domain. Using these peptides, we show that the PDZ domain of HtrA2/Omi suppresses the proteolytic activity unless it is engaged by a binding partner. Subjecting HtrA2/Omi to heat shock treatment also increases its protease activity. Unexpectedly, binding of X-linked inhibitor of apoptosis protein (XIAP) to the Reaper motif of HtrA2/Omi results in a marked increase in proteolytic activity, suggesting a new role for IAPs. When HtrA2/Omi is released from mitochondria following an apoptotic stimulus, binding to IAPs may switch their function from caspase inhibition to serine protease activation. Thus although IAP overexpression can suppress caspase activation, it could have the opposite effect on HtrA2/Omi-dependent cell death. This, together with the ability of HtrA2/Omi to degrade IAPs, may limit the overall cellular protection that can be provided by these proteins.  相似文献   

2.
The mature serine protease Omi/HtrA2 is released from the mitochondria into the cytosol during apoptosis. Suppression of Omi/HtrA2 by RNA interference in human cell lines reduces cell death in response to TRAIL and etoposide. In contrast, ectopic expression of mature wildtype Omi/HtrA2, but not an active site mutant, induces potent caspase activation and apoptosis. In vitro assays demonstrated that Omi/HtrA2 could degrade inhibitor of apoptosis proteins (IAPs). Consistent with this observation, increased expression of Omi/HtrA2 in cells increases degradation of XIAP, while suppression of Omi/HtrA2 by RNA interference has an opposite effect. Combined, our data demonstrate that IAPs are substrates for Omi/HtrA2, and their degradation could be a mechanism by which the mitochondrially released Omi/HtrA2 activates caspases during apoptosis.  相似文献   

3.
ped/pea-15 is a ubiquitously expressed 15-kDa protein featuring a broad anti-apoptotic function. In a yeast two-hybrid screen, the pro-apoptotic Omi/HtrA2 mitochondrial serine protease was identified as a specific interactor of the ped/pea-15 death effector domain. Omi/HtrA2 also bound recombinant ped/pea-15 in vitro and co-precipitated with ped/pea-15 in 293 and HeLa cell extracts. In these cells, the binding of Omi/HtrA2 to ped/pea-15 was induced by UVC exposure and followed the mitochondrial release of Omi/HtrA2 into the cytoplasm. Upon UVC exposure, cellular ped/pea-15 protein expression levels decreased. This effect was prevented by the ucf-101 specific inhibitor of the Omi/HtrA2 proteolytic activity, in a dose-dependent fashion. In vitro incubation of ped/pea-15 with Omi/HtrA2 resulted in ped/pea-15 degradation. In intact cells, the inhibitory action of ped/pea-15 on UVC-induced apoptosis progressively declined at increasing Omi/HtrA2 expression. This further effect of Omi/HtrA2 was also inhibited by ucf-101. In addition, ped/pea-15 expression blocked Omi/HtrA2 co-precipitation with the caspase inhibitor protein XIAP and caspase 3 activation. Thus, in part, apoptosis following Omi/HtrA2 mitochondrial release is mediated by reduction in ped/pea-15 cellular levels. The ability of Omi/HtrA2 to relieve XIAP inhibition on caspases is modulated by the relative levels of Omi/HtrA2 and ped/pea-15.  相似文献   

4.
X chromosome-linked inhibitor of apoptosis (XIAP) is an endogenous inhibitor of caspase-3, -7, and -9. Smac/DIABLO, an inhibitor of XIAP, is released from mitochondria upon receiving apoptotic stimuli and binds to the BIR2 and BIR3 domains of XIAP, thereby inhibiting its caspase-inhibitory activity. Here we report that a serine protease called HtrA2/Omi is released from mitochondria and inhibits the function of XIAP by direct binding in a similar way to Smac. Moreover, when overexpressed extramitochondrially, HtrA2 induces atypical cell death, which is neither accompanied by a significant increase in caspase activity nor inhibited by caspase inhibitors, including XIAP. A catalytically inactive mutant of HtrA2, however, does not induce cell death. In short, HtrA2 is a Smac-like inhibitor of IAP activity with a serine protease-dependent cell death-inducing activity.  相似文献   

5.
Rami A  Kim M  Niquet J 《Neurochemical research》2010,35(12):2199-2207
Omi/HtrA2 is a pro-apoptotic mitochondrial serine protease involved in caspase-dependent as well as caspase-independent cell death upon various brain injuries. However, the role of Omi/HtrA2 in neuronal death induced by status epilepticus (SE) in the immature brain has not been reported. In this study, we analyzed the contribution of serine protease Omi/HtrA2, its substrate X-linked inhibitor of apoptosis protein (XIAP) and the caspase-3 activation to damage of hippocamplal CA1 cells following lithium-pilocarpine SE in P14 rat pups. Status epilepticus in the immature brain significantly induced translocation of Omi/HtrA2 from mitochondria into the cytosol, increased cytosolic accumulation of Omi/HtrA2, induced appearance of XIAP-breakdown products and enhanced caspase-3 activity in the selectively vulnerable hippocampal CA1-subfield. Taken together, these results demonstrate for the first time that SE in the immature brain results in Omi/HtrA2 accumulation in the cytosol, where it probably promotes neuronal death by neutralizing and cleaving XIAP, one of the most potent endogenous inhibitors of apoptosis.  相似文献   

6.
Apollon/BRUCE is a giant IAP protein that has BIR and UBC domains in its amino- and carboxy-terminals, respectively. Apollon binds and ubiquitylates SMAC/DIABLO and caspase9, and regulates apoptosis by facilitating proteasomal degradation of these proteins. Apollon overexpression inhibits apoptosis, while its downregulation sensitizes cells to apoptosis, suggesting that Apollon level is important for apoptosis regulation. Here we show that HtrA2/Omi catalytically cleaves Apollon with its serine protease activity. Conversely, Apollon ubiquitylates and facilitates proteasomal degradation of HtrA2 that binds to Apollon through IAP-binding motif. Thus, Apollon and HtrA2 mutually downregulate each other. Expression of catalytically active, but not inactive, HtrA2 induced apoptosis in Apollon-expressing cells. In Apollon-deficient cells, however, expression of catalytically inactive HtrA2 mutant with IAP-binding motif also induced apoptosis. These results indicate that HtrA2 induces apoptosis in two different mechanisms, one with serine protease domain and the other with IAP-binding motif, in Apollon-deficient cells.  相似文献   

7.
The inhibitor-of-apoptosis proteins (IAPs) play a critical role in the regulation of apoptosis by binding and inhibiting caspases. Reaper family proteins and Smac/DIABLO use a conserved amino-terminal sequence to bind to IAPs in flies and mammals, respectively, blocking their ability to inhibit caspases and thus promoting apoptosis. Here we have identified the serine protease Omi/HtrA2 as a second mammalian XIAP-binding protein with a Reaper-like motif. This protease autoprocesses to form a protein with amino-terminal homology to Smac/DIABLO and Reaper family proteins. Full-length Omi/HtrA2 is localized to mitochondria but fails to interact with XIAP. Mitochondria also contain processed Omi/HtrA2, which, following apoptotic insult, translocates to the cytosol, where it interacts with XIAP. Overexpression of Omi/HtrA2 sensitizes cells to apoptosis, and its removal by RNA interference reduces cell death. Omi/HtrA2 thus extends the set of mammalian proteins with Reaper-like function that are released from the mitochondria during apoptosis.  相似文献   

8.
The serine protease HtrA2/Omi is released from the mitochondrial intermembrane space following apoptotic stimuli. Once in the cytosol, HtrA2/Omi has been implicated in promoting cell death by binding to inhibitor of apoptosis proteins (IAPs) via its amino-terminal Reaper-related motif, thus inducing caspase activity, and also in mediating caspase-independent death through its own protease activity. We report here the phenotype of mice entirely lacking expression of HtrA2/Omi due to targeted deletion of its gene, Prss25. These animals, or cells derived from them, show no evidence of reduced rates of cell death but on the contrary suffer loss of a population of neurons in the striatum, resulting in a neurodegenerative disorder with a parkinsonian phenotype that leads to death of the mice around 30 days after birth. The phenotype of these mice suggests that it is the protease function of this protein and not its IAP binding motif that is critical. This conclusion is reinforced by the finding that simultaneous deletion of the other major IAP binding protein, Smac/DIABLO, does not obviously alter the phenotype of HtrA2/Omi knockout mice or cells derived from them. Mammalian HtrA2/Omi is therefore likely to function in vivo in a manner similar to that of its bacterial homologues DegS and DegP, which are involved in protection against cell stress, and not like the proapoptotic Reaper family proteins in Drosophila melanogaster.  相似文献   

9.
Inhibitor of apoptosis (IAP) proteins inhibit caspases, a function counteracted by IAP antagonists, insect Grim, HID, and Reaper and mammalian DIABLO/Smac. We now demonstrate that HtrA2, a mammalian homologue of the Escherichia coli heat shock-inducible protein HtrA, can bind to MIHA/XIAP, MIHB, and baculoviral OpIAP but not survivin. Although produced as a 50-kDa protein, HtrA2 is processed to yield an active serine protease with an N terminus similar to that of Grim, Reaper, HID, and DIABLO/Smac that mediates its interaction with XIAP. HtrA2 is largely membrane-associated in healthy cells, with a significant proportion observed within the mitochondria, but in response to UV irradiation, HtrA2 shifts into the cytosol, where it can interact with IAPs. HtrA2 can, like DIABLO/Smac, prevent XIAP inhibition of active caspase 3 in vitro and is able to counteract XIAP protection of mammalian NT2 cells against UV-induced cell death. The proapoptotic activity of HtrA2 in vivo involves both IAP binding and serine protease activity. Mutations of either the N-terminal alanine of mature HtrA2 essential for IAP interaction or the catalytic serine residue reduces the ability of HtrA2 to promote cell death, whereas a complete loss in proapoptotic activity is observed when both sites are mutated.  相似文献   

10.
The X-linked mammalian inhibitor of apoptosis protein (XIAP) has been shown to bind several partners. These partners include caspase 3, caspase 9, DIABLO/Smac, HtrA2/Omi, TAB1, the bone morphogenetic protein receptor, and a presumptive E2 ubiquitin-conjugating enzyme. In addition, we show here that XIAP can bind to itself. To determine which of these interactions are required for it to inhibit apoptosis, we generated point mutant XIAP proteins and correlated their ability to bind other proteins with their ability to inhibit apoptosis. partial differential RING point mutants of XIAP were as competent as their full-length counterparts in inhibiting apoptosis, although impaired in their ability to oligomerize with full-length XIAP. Triple point mutants, unable to bind caspase 9, caspase 3, and DIABLO/HtrA2/Omi, were completely ineffectual in inhibiting apoptosis. However, point mutants that had lost the ability to inhibit caspase 9 and caspase 3 but retained the ability to inhibit DIABLO were still able to inhibit apoptosis, demonstrating that IAP antagonism is required for apoptosis to proceed following UV irradiation.  相似文献   

11.
A mature form of nuclear-encoded mitochondrial serine protease HtrA2/Omi is pivotal in regulating apoptotic cell death; however, the underlying mechanism of the processing event of HtrA2/Omi and its relevant biological function remain to be clarified. Here, we describe that HtrA2/Omi is autocatalytically processed to the 36-kDa protein fragment, which is required for the cytochrome c-dependent caspase activation along with neutralizing XIAP-mediated inhibition of caspases through interaction with XIAP, eventually promoting apoptotic cell death. We have shown that the autocatalytic processing of HtrA2/Omi occurs via an intermolecular event, demonstrated by incubating an in vitro translated HtrA2/Omi (S306A) mutant with the enzymatically active glutathione S-transferase-HtrA2/Omi protein. Using N-terminal amino acid sequencing and mutational analysis, we identified that the autocatalytic cleavage site is the carboxyl side of alanine 133 of HtrA2/Omi, resulting in exposure of an inhibitor of apoptosis protein binding motif in its N terminus. Our study provides evidence that the autocatalytic processing of HtrA2/Omi is crucial for regulating HtrA2/Omi-mediated apoptotic cell death.  相似文献   

12.
Mammalian mitochondrial IAP binding proteins   总被引:24,自引:0,他引:24  
Four mitochondrial proteins have been identified that immunoprecipitate with the mammalian inhibitor of apoptosis (IAP) protein XIAP. Each of them interacts via a processed amino terminus that resembles those of the insect pro-apoptotic IAP binding proteins Grim, HID, Reaper, and Sickle. Two, Diablo/Smac and HrtA2/Omi, have been extensively characterized. Both Diablo and HtrA2 can bind to IAPs and promote apoptosis when over-expressed in transfected cells, but unlike the insect IAP antagonists, to date there is scant evidence that they are important regulators of apoptosis in more physiological circumstances.  相似文献   

13.
Omi/HtrA2 is a pro-apoptotic mitochondrial serine protease involved in both forms of apoptosis, caspase-dependent as well as caspase-independent cell death. However, the impact of Omi/HtrA2 in the apoptotic cell machinery that takes place in vivo under pathological conditions such as cerebral ischemia remains unknown. The present study was monitored in order to examine whether Omi/HtrA2 plays a decisive role in apoptosis observed after focal cerebral ischemia in rats. Male adult rats were subjected to 90min of focal cerebral ischemia followed by reperfusion and treated with vehicle or ucf-101, a novel and specific Omi/HtrA2 inhibitor, prior reperfusion. Focal cerebral ischemia/reperfusion induced a mitochondrial up-regulation of Omi/HtrA2 and significantly increased cytosolic accumulation of Omi/HtrA2. Furthermore, ischemia led to activation of caspase-3 and degradation X-linked inhibitor of apoptosis protein (XIAP). Treatment of animals prior ischemia with ucf-101, the specific inhibitor of Omi/HtrA2, was able to (1) reduce the number of TUNEL-positive cells, to (2) attenuate the XIAP-breakdown and to (3) reduce the infarct size. This study shows for the first time that focal cerebral ischemia in rats results in Omi/HtrA2 translocation from the mitochondria to the cytosol, where it participates in neuronal cell death. Blocking the proteolytic activity of Omi/HtrA2 with specific inhibitors, such as the ucf-101, could be a novel way to afford neuroprotection and minimize cellular damage in cerebral ischemia/reperfusion.  相似文献   

14.
Dopaminergic neurons in the substantia nigra are particularly vulnerable, and their degeneration leads to Parkinson's disease. We have previously reported that matrix metalloproteinase-3 (MMP-3) activity is involved in dopaminergic neurodegeneration by multiple mechanisms and that this requires activation of MMP-3 from proMMP-3 by an intracellular serine protease. HtrA2/Omi is a mitochondrial serine protease that has been shown in non-dopaminergic cells to translocate into the cytosol where it triggers apoptosis. In the present study we sought to determine whether HtrA2/Omi might cause activation of MMP-3 in dopaminergic neuronal cells using CATH.a cell line. Mitochondrial stress induced by rotenone led to MMP-3 activation and HtrA2/Omi translocation into the cytosol. The MMP-3 activation involved HtrA2/Omi, because both pharmacological inhibition and siRNA-induced knockdown of HtrA2/Omi attenuated the activation induced by rotenone or MPP+. Overexpression of mature HtrA2/Omi, but not mutant HtrA2/Omi, resulted in MMP-3 activity increase and cell death. Addition of recombinant and catalytically active HtrA2/Omi to lysate of untreated cells led to activation of the endogenous MMP-3, and incubation of the HtrA2/Omi with recombinant proMMP-3 caused cleavage of proMMP-3 to a 48kD protein, corresponding to the active form, which was accompanied by an increase in MMP-3 activity. Taken together, the data indicate that HtrA2/Omi, which normally exists in the mitochondria, can cause MMP-3 activation in the cytosol under a cell stress condition, which can ultimately lead to demise of dopaminergic neuronal cells.  相似文献   

15.
To identify human proteins that bind to the Smac and caspase-9 binding pocket on the baculoviral inhibitor of apoptosis protein (IAP) repeat 3 (BIR3) domain of human XIAP, we used BIR3 as an affinity reagent, followed by elution with the BIR3 binding peptide AVPIA, microsequencing, and mass spectrometry. The mature serine protease Omi (also known as HtrA2) was identified as a mitochondrial direct BIR3-binding protein and a caspase activator. Like mature Smac (also known as Diablo), mature Omi contains a conserved IAP-binding motif (AVPS) at its N terminus, which is exposed after processing of its N-terminal mitochondrial targeting sequence upon import into the mitochondria. Mature Omi is released together with mature Smac from the mitochondria into the cytosol upon disruption of the outer mitochondrial membrane during apoptosis. Finally, mature Omi can induce apoptosis in human cells in a caspase-independent manner through its protease activity and in a caspase-dependent manner via its ability to disrupt caspase-IAP interaction. Our results provide clear evidence for the involvement of a mitochondrial serine protease in the apoptotic pathway, emphasizing the critical role of the mitochondria in cell death.  相似文献   

16.
17.
Omi/HtrA2 is a nuclear encoded mitochondrial serine protease with dual and opposite functions that depend entirely on its subcellular localization. During apoptosis, Omi/HtrA2 is released into the cytoplasm where it participates in cell death. While confined in the inter-membrane space of the mitochondria, Omi/HtrA2 has a pro-survival function that may involve the regulation of protein quality control (PQC) and mitochondrial homeostasis. Loss of Omi/HtrA2's protease activity causes the neuromuscular disorder of the mnd2 (motor neuron degeneration 2) mutant mice. These mice develop multiple defects including neurodegeneration with parkinsonian features. Loss of Omi/HtrA2 in non-neuronal tissues has also been shown to cause premature aging. The normal function of Omi/HtrA2 in the mitochondria and how its deregulation causes neurodegeneration or premature aging are unknown. Here we report that the mitochondrial Mulan E3 ubiquitin ligase is a specific substrate of Omi/HtrA2. During exposure to H2O2, Omi/HtrA2 degrades Mulan, and this regulation is lost in cells that carry the inactive protease. Furthermore, we show accumulation of Mulan protein in various tissues of mnd2 mice as well as in Omi/HtrA2(−/−) mouse embryonic fibroblasts (MEFs). This causes a significant decrease of mitofusin 2 (Mfn2) protein, and increased mitophagy. Our work describes a new stress-signaling pathway that is initiated in the mitochondria and involves the regulation of Mulan by Omi/HtrA2 protease. Deregulation of this pathway, as it occurs in mnd2 mutant mice, causes mitochondrial dysfunction and mitophagy, and could be responsible for the motor neuron disease and the premature aging phenotype observed in these animals.  相似文献   

18.
To identify apoptotic targets of HtrA2/Omi, we purified recombinant HtrA2/Omi and its catalytically inactive S306A mutant. Lysates of human Jurkat T lymphocytes incubated with either wild-type recombinant HtrA2/Omi or the S306A mutant were screened using the gel-free COFRADIC approach that isolates peptides covering the N-terminal parts of proteins. Analysis of the 1162 proteins identified by mass spectrometry yielded 15 HtrA2/Omi substrates of potential physiological relevance together holding a total of 50 cleavage sites. Several processing events were validated by incubating purified recombinant HtrA2/Omi with in vitro translated substrates or with Jurkat cell lysates. In addition, the generated set of cleavage sites was used to assess the protein substrate specificity of HtrA2/Omi. Our results suggest that HtrA2/Omi has a rather narrow cleavage site preference and that cytoskeletal proteins are prime targets of this protease.  相似文献   

19.
The C-terminal tail of presenilin regulates Omi/HtrA2 protease activity   总被引:10,自引:0,他引:10  
Presenilin mutations are responsible for most cases of autosomal dominant inherited forms of early onset Alzheimer disease. Presenilins play an important role in amyloid beta-precursor processing, NOTCH receptor signaling, and apoptosis. However, the molecular mechanisms by which presenilins regulate apoptosis are not fully understood. Here, we report that presenilin-1 (PS1) regulates the proteolytic activity of the serine protease Omi/HtrA2 through direct interaction with its regulatory PDZ domain. We show that a peptide corresponding to the cytoplasmic C-terminal tail of PS1 dramatically increases the proteolytic activity of Omi/HtrA2 toward the inhibitor of apoptosis proteins and beta-casein and induces cell death in an Omi/HtrA2-dependent manner. Consistent with these results, ectopic expression of full-length PS1, but not PS1 lacking the C-terminal PDZ binding motif, potentiated Omi/HtrA2-induced cell death. Our results suggest that the C terminus of PS1 is an activation peptide ligand for the PDZ domain of Omi/HtrA2 and may regulate the protease activity of Omi/HtrA2 after its release from the mitochondria during apoptosis. This mechanism of Omi/HtrA2 activation is similar to the mechanism of activation of the related bacterial DegS protease by the outer-membrane porins.  相似文献   

20.
HtrA2/Omi, a mitochondrial trypsin-like serine protease, is pivotal in regulating apoptotic cell death; however, the underlying mechanism of HtrA2/Omi-mediated apoptosis remains to be elucidated. Using the pGEX bacterial expression system, we investigated the expression patterns of various forms of HtrA2/Omi. Full-length mouse HtrA2/Omi (mHtrA2/Omi) was successfully expressed in E. coli and purified as a proteolytically active protein. In contrast, the expression of full-length human HtrA2/Omi (hHtrA2/Omi) in E. coli was barely detected. On the basis of this result, we characterized further the expression patterns of N- or C-terminally truncated hHtrA2/Omi proteins. We found that three copies of the PRAXXTXXTP motif, which exist only in hHtrA2/Omi, might serve as a primary site that is highly susceptible to proteolytic degradation by host proteases. Removal of the N-terminal region containing the PRAXXTXXTP motifs produced a form resistant to proteolytic degradation during expression in E. coli and purification, consequently improving the production of a catalytically active, mature hHtrA2/Omi. Our study provides a method for generating useful reagents to investigate molecular mechanism by which HtrA2/Omi contributes to regulating apoptotic cell death and to identify natural substrates of HtrA2/Omi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号