首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A functional homologue (ung1) of the human uracil-DNA-glycosylase (UNG) gene was characterized from fission yeast (Schizosaccharomyces pombe). The ung1 gene is highly conserved and encodes a protein with uracil-DNA-glycosylase activity similar to human UNG. The Ung1 protein localizes predominantly to the nucleus, suggesting that it is more similar to the nuclear form (UNG2) than the mitochondrial form (UNG1) of human UNG. Even though deletion of ung1 does not cause any obvious defects, overexpression of ung1 increases the mutation frequency. Overexpression of ung1 or human UNG2 induces a DNA checkpoint-dependent cell cycle delay and causes cell death which is enhanced when the checkpoints are inactive. In addition, the steady-state level of AP (apurinic/apyrimidinic) sites increases after ung1 overexpression, indicating that AP sites are likely to be the DNA damage caused by overexpression. Analysis of mutant ung indicates that catalytic activity is not required for the effects of overexpression, but that binding of Ung1 or UNG2 to AP sites may be important.  相似文献   

2.
The role of the accessory gene product Vpr during human immunodeficiency virus type 1 infection remains unclear. We have used the yeast two-hybrid system to identify cellular proteins that interact with Vpr and could be involved in its function. A cDNA clone which encodes the human uracil DNA glycosylase (UNG), a DNA repair enzyme involved in removal of uracil in DNA, has been isolated. Interaction between Vpr and UNG has been demonstrated by in vitro protein-protein binding assays using translated, radiolabeled Vpr and UNG recombinant proteins expressed as a glutathione S-transferase fusion protein. Conversely, purified UNG has been demonstrated to interact with Vpr recombinant protein expressed as a glutathione S-transferase fusion protein. Coimmunoprecipitation experiments confirmed that Vpr and UNG are associated within cells expressing Vpr. By using a panel of C- and N-terminally deleted Vpr mutants, we have determined that the core protein of Vpr, spanning amino acids 15 to 77, is involved in the interaction with UNG. We also demonstrate by in vitro experiments that the enzymatic activity of UNG is retained upon interaction with Vpr.  相似文献   

3.
4.
The complete nucleotide sequence of the glucoamylase gene GLU1 from the yeast Saccharomycopsis fibuligera has been determined. The GLU1 DNA hybridized to a polyadenylated RNA of 2.1 kilobases. A single open reading frame codes for a 519-amino-acid protein which contains four potential N-glycosylation sites. The putative precursor begins with a hydrophobic segment that presumably acts as a signal sequence for secretion. Glucoamylase was purified from a culture fluid of the yeast Saccharomyces cerevisiae which had been transformed with a plasmid carrying GLU1. The molecular weight of the protein was 57,000 by both gel filtration and acrylamide gel electrophoresis. The protein was glycosylated with asparagine-linked glycosides whose molecular weight was 2,000. The amino-terminal sequence of the protein began from the 28th amino acid residue from the first methionine of the putative precursor. The amino acid composition of the purified protein matched the predicted amino acid composition. These results confirmed that GLU1 encodes glucoamylase. A comparison of the amino acid sequence of glucoamylases from several fungi and yeast shows five highly conserved regions. One homology region is absent from the yeast enzyme and so may not be essential to glucoamylase function.  相似文献   

5.
SDS electrophoresis gels of complex III from yeast mitochondria were run after incubation of the enzyme at several different temperatures. It was found that the intensity of the more slowly moving core protein band was substantially affected by the incubation temperature. Four low molecular weight polypeptides were eluted from gels electrophoresed after preincubation of the enzyme at 15° C for 12 hours. These polypeptides were then incubated for 5 minutes at 100° followed by SDS gel electrophoresis. A polypeptide with the same molecular weight as the anomalous core protein was resolved.  相似文献   

6.
Extracellular phytase from Aspergillus ficuum, a glycoprotein, was purified to homogeneity in 3 column chromatographic steps using ion exchange and chromatofocusing. Results of gel filtration chromatography and SDS-polyacrylamide gel electrophoresis indicated the approximate molecular weight of the native protein to be 85-100-KDa. On the basis of a molecular weight of 85-KDa, the molar extinction coefficient of the enzyme at 280 nm was estimated to be 1.2 X 10(4) M-1 cm-1. The isoelectric point of the enzyme, as deduced by chromatofocusing, was about 4.5. The purified enzyme is remarkably stable at 0 degree C. Thermal inactivation studies have shown that the enzyme retained 40% of its activity after being subjected to 68 degrees C for 10 minutes, and the enzyme exhibited a broad temperature optimum with maximum catalytic activity at 58 degrees C. The Km of the enzyme for phytate and p-nitrophenylphosphate is about 40 uM and 265 uM, respectively, with an estimated turnover number of the enzyme for phytate of 220 per sec. Enzymatic deglycosylation of phytase by Endoglycosidase H lowered the molecular weight of native enzyme from 85-100-KDa to about 76-KDa; the digested phytase still retained some carbohydrate as judged by positive periodic acid-Schiff reagent staining of the electrophoresed protein. Immunoblotting of the phytase with monoclonal antibody 7H10 raised against purified native enzyme recognized not only native but also partially deglycosylated protein.  相似文献   

7.
Yeast and horse alcohol dehydrogenases are commonly used as standards for radiation inactivation analysis of proteins, usually assuming that the minimal functional unit corresponds to the physical size in solution, a tetramer (Mr = 148,000) and a dimer (Mr = 80,000), respectively. Results described in this paper demonstrate that molecular weight overestimates may be obtained for the yeast protein as a result of its unusual sensitivity to secondary radiation products. Irradiation in the presence of sulfhydryl reagents results in a smaller functional size estimate (67,000 +/- 3000) than that obtained in their absence (128,000 +/- 5000), indicating that some sulfhydryl groups in the enzyme may be particularly susceptible to attack by radiolytic species. Analysis of the horse liver enzyme reveals that although it has structural and functional similarities to the yeast protein, it is not as prone to secondary radiation damage and gives a minimal functional size estimate (33,000 +/- 1000) that most closely corresponds to a monomer. Quantitation of disappearance of the protein from a sodium dodecyl sulfate gel as a function of radiation dose also gives a target size (48,000 +/- 3000) in reasonable agreement with the monomer molecular weight. These results indicate that the individual subunits of horse liver alcohol dehydrogenase have independent catalytic capacity and imply that the same may be true for the yeast enzyme.  相似文献   

8.
Gene-targeted mice deficient in the evolutionarily conserved uracil-DNA glycosylase encoded by the UNG gene surprisingly lack the mutator phenotype characteristic of bacterial and yeast ung(-) mutants. A complementary uracil-DNA glycosylase activity detected in ung(-/-) murine cells and tissues may be responsible for the repair of deaminated cytosine residues in vivo. Here, specific neutralizing antibodies were used to identify the SMUG1 enzyme as the major uracil-DNA glycosylase in UNG-deficient mice. SMUG1 is present at similar levels in cell nuclei of non-proliferating and proliferating tissues, indicating a replication- independent role in DNA repair. The SMUG1 enzyme is found in vertebrates and insects, whereas it is absent in nematodes, plants and fungi. We propose a model in which SMUG1 has evolved in higher eukaryotes as an anti-mutator distinct from the UNG enzyme, the latter being largely localized to replication foci in mammalian cells to counteract de novo dUMP incorporation into DNA.  相似文献   

9.
The ILV5 gene of Saccharomyces cerevisiae is highly expressed.   总被引:12,自引:2,他引:10       下载免费PDF全文
  相似文献   

10.
dUTP pyrophosphatase (dUTPase; EC 3.6.1.23) catalyses the hydrolysis of dUTP to dUMP and PPi and thereby prevents the incorporation of uracil into DNA during replication. Although it is widely believed that dUTPase is essential for cell viability because of this role, direct evidence supporting this assumption has not been presented for any eukaryotic system. We have analysed the role of dUTPase (DUT1) in the life cycle of yeast. Using gene disruption and tetrad analysis, we find that DUT1 is necessary for the viability of S. cerevisiae; however, under certain conditions dut1 null mutants survive if supplied with exogenous thymidylate (dTMP). Analyses with isogenic uracil-DNA-glycosylase (UNG1) deficient or proficient strains indicate that in the absence of dUTPase, cell death results from the incorporation of uracil into DNA and the attempted repair of this damage by UNG1-mediated excision repair. However, in dut1 ung1 double mutants, starvation for dTMP causes dividing cells to arrest and die in all phases of the cell cycle. This latter effect suggests that the extensive stable substitution of uracil for thymine in DNA leads to a general failure in macromolecular synthesis. These results are in general agreement with previous models in thymine-less death that implicate dUTP metabolism. They also suggest an alternative approach for chemotherapeutic drug design.  相似文献   

11.
Uracil-DNA glycosylase (UDG; UNG) has been purified 17000-fold from Atlantic cod liver (Gadus morhua). The enzyme has an apparent molecular mass of 25 kDa, as determined by gel filtration, and an isoelectric point above 9.0. Atlantic cUNG is inhibited by the specific UNG inhibitor (Ugi) from the Bacillus subtilis bacteriophage (PBS2), and has a 2-fold higher activity for single-stranded DNA than for double-stranded DNA. cUNG has an optimum activity between pH 7.0-9.0 and 25-50 mM NaCl, and a temperature optimum of 41 degrees C. Cod UNG was compared with the recombinant human UNG (rhUNG), and was found to have slightly higher relative activity at low temperatures compared with their respective optimum temperatures. Cod UNG is also more pH- and temperature labile than rhUNG. At pH 10.0, the recombinant human UNG had 66% residual activity compared with only 0.4% for the Atlantic cUNG. At 50 degrees C, cUNG had a half-life of 0.5 min compared with 8 min for the rhUNG. These activity and stability experiments reveal cold-adapted features in cUNG.  相似文献   

12.
Acetyl-CoA synthetase, utilized in a coupled reaction system, has been shown to be applicable to the spectrophotometric determination of propionic and methylmalonic acids in biological fluids. The isolation of acetyl-CoA synthetase from yeast is simpler than the purification from mammalian sources. This study also presents some properties of the yeast enzyme and compares it to the more extensively studied enzyme isolated from ammmalian tissue. Isolation and purification yielded a preparation with a specific activity of 44 units/mg at 25 degrees. The purified acetyl-CoA synthetase was apparently homogeneous by sodium dodecyl sulfate-poly-acrylamide gel electrophoresis with an estimated subunit molecular weight of 78,000. Polyacrylamide gel electrophoresis in the presence of ATP revealed a single protein band which contained all of the enzyme activity. Analytical ultra-centrifuge studies indicated the presence of a single protein with a molecular wright of 151,000 and sedimentation velocity analysis revealed a single peak with a sedimentation coefficient of 8.65 So20,w. Similar to the enzyme from mammalian sources, yeast acetyl-CoA synthetase has a high degree of substrate specificity and is active only on acetate and propionate. In addition, the reaction mechanism, as demonstrated by initial velocity patterns obtained from substrate pairs, appeared to be identical to the enzyme from bovine heart. However, the apparent Michaelis constants for the substrates were significantly different from the mammalian enzyme. The yeast-derived enzyme also differed from the mammalian in terms of molecular weight, amino acid composition, pH optimum, effect of monovalent cations, and stability characteristics. Thus, yeast acetyl-CoA synthetase is more easily purified than the mammalian enzyme and provides an excellent preparation for the assay of propionic and methylmalonic acids.  相似文献   

13.
14.
Physical-chemical studies of pyruvate carboxylase from Pseudomonas citronellolis demonstrate that the enzyme has an alpha 4 beta 4 structure. The individual polypeptides, alpha (Mr = 65,000) and beta (Mr = 54,000), were separated and isolated by preparative gel electrophoresis. Analysis of the relationship between Coomassie blue staining and protein quantity for each polypeptide indicated that the alpha and beta subunits are present in a 1:1 stoichiometry in the native enzyme. Determinations of the molecular weight of the protein by sedimentation equilibrium (Mr = 454,000), gel filtration analysis (Mr = 510,000), disc gel electrophoresis (Mr = 530,000), and mass measurement from the Scanning Transmission Electron Microscope (Mr = 530,000) are consistent with the proposed alpha 4 beta 4 structure. Disc gel electrophoresis studies revealed that under certain circumstances the enzyme may dissociate to a smaller molecular weight species (Mr = 228,000). This dissociation phenomenon could explain the earlier reported observation of Taylor et al. ((1972) J. Biol. Chem 22, 7388-8390) that the enzyme had a molecular weight of 265,000. Evidence from electron microscopic studies shows that the three-dimensional structure of this enzyme is quite distinct from other species of pyruvate carboxylase. The enzyme does not show the typical rhombic appearance which has been noted for chicken liver, sheep liver, and yeast pyruvate carboxylase.  相似文献   

15.
The molecular events of start, the regulatory step that commits yeast cells to DNA replication, have recently begun to be investigated. One of the gene products required for completion of start has been found to have a significant structural homology with oncogenes endowed with protein kinase activity. Our experiments provide data on the biosynthetic pathway of a previously identified labile protein (p100, molecular weight 100,000, isoelectric point of approximately 4.8-5) involved in cell cycle progression at start, which appears to be specifically made during the release from cell cycle arrest of a temperature-sensitive mutant (cdc25) of Saccharomyces cerevisiae. On two-dimensional gel, p100 migrates very close to another 100-kDa labile protein (p100*) which behaves as a cell cycle modulated protein with reduced synthesis in G1. Pulse and chase labeling of protein with [35S]methionine suggests that both p100 and p100* are processed to a protein (p115) of slightly higher molecular weight (Mr = 115,000). Peptide mapping analysis indicates that p100 and p100 yield identical maps and that both p100 and p100* are very much similar to p115. p115 is a glycosylated protein as shown by a labeling experiment with [3H]glucosamine and by the fact that the synthesis of both p100 and p115 is inhibited if cells are cultured in the presence of tunicamycin. A protein having the same heterogeneous aspect of migration on sodium dodecyl sulfate-polyacrylamide gel and the same apparent molecular weight and isoelectric point of p115 is abundantly present in a preparation of membranes from S. cerevisiae and the isolated radioactive p115 comigrates with it. Taken together these results favor the idea that terminal glycosylation of both p100 and p100* gives rise to the fully glycosylated p115 protein which appears to be a membrane-associated protein.  相似文献   

16.
J A Thomson 《Gene》1977,1(5-6):347-356
A hybrid plasmid, pLC 16-4, from the ColE1-DNA (E. coli) bank of Clarke and Carbon (1976) carrying pfkA was used to program an in vitro protein synthesis system from E. coli. Phosphofructokinase was the main product, as determined by enzyme assay, immunoprecipitation and gel electrophoresis. The enzyme was synthesized in vitro without added cAMP at a rate (enzyme/genome/h) ca. 30% the in vivo value, a higher efficiency than usually found in cell free systems. The plasmic molecular weight is ca. 16.10(6) daltons.  相似文献   

17.
Factors affecting the oligomeric structure of yeast external invertase   总被引:4,自引:0,他引:4  
It has been assumed that yeast external invertase is a dimer, with each subunit composed of a 60-kDa polypeptide chain. We now present evidence that at its optimal pH of 5.0, the predominant form of external invertase is an octamer with an average size of 8 X 10(5) Da. During ultracentrifugation the octamer dissociated to lower molecular weight forms, including a hexamer, tetramer, and dimer. All forms of the enzyme were shown to possess identical specific activities and to contain a similar carbohydrate to protein ratio. Although the monomer subunits (1 X 10(5) Da) were heterogenous in carbohydrate content, each subunit possessed nine oligosaccharide chains. When stained for protein and enzyme activity following sodium dodecyl sulfate-polyacrylamide gel electrophoresis, only the oligomeric form of the enzyme appeared to be active. Thus, on partially inactivating invertase with 4 M guanidine hydrochloride both octamer and monomer were evident on the gels but only the former was active. Similarly, incubating at pH 2.5 in the presence of sodium dodecyl sulfate yielded only inactive monomer. The monomer, unlike the active oligomeric aggregate, was unable to hydrolyze sucrose after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Consistent with the in vitro studies, freshly prepared yeast lysate was shown to contain the octameric species of external invertase as the major active form of this enzyme. From these studies and others which employed deglycosylated invertase, it is concluded that the carbohydrate component of external invertase contributes not only to stabilizing enzyme activity, but also to maintaining its oligomeric structure.  相似文献   

18.
A coliphage M13 chimer containing the Saccharomyces cerevisiae TRP1 gene and ARS1 replication origin (mPY2) was grown on an ung- dut- strain of Escherichia coli. The resulting single-stranded phage DNA had 13% of thymine residues substituted by uracil. This DNA failed to transform a delta trp1 yeast strain to prototrophy. However, when a mutagenized yeast stock was transformed with uracil-containing single-stranded mPY2 DNA, unstable transformants were obtained. After plasmid segregation, about half of these were retransformed at a high frequency by uracil-containing single-stranded mPY2 DNA. In vitro, these mutants were defective for uracil-DNA-glycosylase activity. They were designated ung1. Strains containing the ung1 mutation have an increased sensitivity to sodium bisulfite and sodium nitrite but a wild-type sensitivity to methyl methanesulfonate, UV light, and drugs that cause depletion of the thymidylate pool. They have a moderate mutator phenotype for nuclear but not for mitochondrial genes. A low mitochondrial uracil-DNA-glycosylase activity was demonstrated in the mutant strains.  相似文献   

19.
Purification of (Ca2+-Mg2+)-ATPase from rat liver plasma membranes   总被引:1,自引:0,他引:1  
The Ca2+-stimulated, Mg2+-dependent ATPase from rat liver plasma membranes was solubilized using the detergent polyoxyethylene 9 lauryl ether and purified by column chromatography using Polybuffer Exchanger 94, concanavalin A-Sepharose 4B, and Sephadex G-200. The molecular weight of the enzyme, estimated by gel filtration in the presence of the detergent on a Sephadex G-200 column, was 200,000 +/- 15,000. The enzyme was purified at least 300-fold from rat liver plasma membranes and had a specific activity of 19.7 mumol/mg/min. Polyacrylamide gel electrophoresis under nondenaturing conditions of the purified enzyme indicated that the enzymatic activity correlated with the major protein band. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis, one major band in the molecular weight range of 70,000 +/- 5,000 was seen. The isoelectric point of the purified enzyme was 6.9 +/- 0.2 as determined by analytical isoelectric focusing. The enzyme was activated by Ca2+ with an apparent half-saturation constant of 87 +/- 2 nM for Ca2+. Calmodulin and trifluoperazine at the concentration of 1 microgram/ml and 100 microM, respectively, had no effect on the enzymatic activity.  相似文献   

20.
The molecular size of pig liver carboxylesterase has been investigated under a variety of conditions of pH and ionic strength. From equilibrium and velocity sedimentation at pH 4.0 and pH 7.5, and from chromatography on Sephadex G-200,we conclude that the monomeric molecular weight is similar to 65,000 daltons and that the enzyme associates to form trimers. Association equilibrium constants for the monomer-trimer system were estimated to be 0.02 1-2 g-2 at pH 4 (concentration-dependent molecular weight data) and 2 times 10-5 1-2g-2 at pH 7.5 (frontal gel chromatographic results). These studies were aided by comparisons of the properties of the pig liver enzyme with those of chicken liver carboxylesterase, which is shown to exhibit the velocity and equilibrium sedimentation characteristics of a homogeneous protein with molecular weight similar to 65,000. Studies of pig and chicken liver carboxylesterases in 6 M guanidinium chloride, 0.1 M in beta-mercaptoethanol, support the proposition that the monomeric species of these enzymes have molecular weights of similar to 65,000. On polyacrylamide gel electrophoresis in SDS, there is no evidence for a major species of molecular weight less than similar to 65,000 for the pig enzyme, but ca. 50 percent of the chicken esterase is dissociated into two species of molecular weight similar to 30,000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号