首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trade-offs between plant leaf hydraulic and economic traits   总被引:1,自引:0,他引:1       下载免费PDF全文
《植物生态学报》2015,39(10):1021
Leaf is the most important organ for carbon-water coupling of a plant because it is the primary medium for photosynthesis. It also acts as the hydraulic bottleneck and safety valve against hydraulic catastrophic dysfunctions. The leaf economics spectrum, which reflects the balance between investments and returns of leaf economic traits, provides a useful framework for examining species strategies as shaped by their evolutionary history. Changes in leaf hydraulic traits will influence leaf economic traits as well as plant survival and growth. Exploring trade-offs between leaf hydraulic and economic traits is thus of significance for modeling carbon-water relations, understanding the mechanisms of water/carbon investments, and extending the leaf economic spectrum. In this review, we first examined the trade-offs between leaf hydraulic and economic traits. Specially, we analyzed the relationships between leaf hydraulic conductivity and hydraulic vulnerability, water potential at the turgor loss point, water capacitance, safety margin, and leaf morphological, structural and functional traits. We then discussed potential mechanisms regulating leaf hydraulic and economic traits from leaf morphology, anatomy, venation, and stomatal functions. Finally, we proposed future research to: (1) develop an integrated whole-plant economics spectrum, including carbon-nitrogen-water resources and root-stem-leaf hydraulic transport system that will help revealing ecophysiological mechanisms of plant structure-functional coupling, carbon sequestration and water use; (2) explore a generalized trade-offs among leaf hydraulic safety, hydraulic efficiency and carbon fixation efficiency to advance our understanding of the relationships between biophysical structure and physiological metabolism in plant leaf construction under drought stress; and (3) explore the carbon-water metabolic relationship and coupling of water transport and growth rate for the metabolic theory and predictions at community scale.  相似文献   

2.
植物叶片水力与经济性状权衡关系的研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
金鹰  王传宽 《植物生态学报》2015,39(10):1021-1032
叶片既是植物光合产物形成的主要场所, 又是整株植物的水力瓶颈、应对灾难性水力失调的安全阀门, 是植物碳水耦合权衡的重要器官。叶经济型谱反映了叶片经济性状“投资-收益”的权衡, 为验证植物进化过程中形成的物种对策提供了适用的理论框架。叶片水力性状变化会影响叶片经济性状及植物存活和生长。因此, 探索植物叶片水力与经济性状的权衡关系, 对建立植物碳-水耦合模型、揭示植物水-碳投资机理、扩展植物性状型谱等均有重要意义。该文首先综述了叶片水力性状、经济性状及两者之间的权衡关系, 分析了叶片导水率与水力脆弱性、失膨点水势、水容、安全阈值等水力性状以及与叶片的形态、结构和气体交换功能性状之间的关系。然后, 从叶片形态、解剖和叶脉网络结构以及气孔功能方面探讨了叶片水力性状与经济性状的调节机制。最后, 提出今后应加强三方面的研究: (1)探索建立植物根-茎-叶水力输导系统的碳-氮-水资源的整株经济型谱, 以揭示植物功能结构耦合、高效固碳用水的生理生态学机制; (2)探索叶片水力安全、水力效率和固碳效率之间的普适性权衡关系, 以深入理解抗旱植物叶片构建的生物物理结构与生理代谢的关系; (3)探索个体水平碳水代谢关系、水分运输与生长速率的耦合, 为代谢推演理论和植物群落尺度预测提供基础。  相似文献   

3.
The degree of plant iso/anisohydry, a widely used framework for classifying species‐specific hydraulic strategies, integrates multiple components of the whole‐plant hydraulic pathway. However, little is known about how it associates with coordination of functional and structural traits within and across different organs. We examined stem and leaf hydraulic capacitance and conductivity/conductance, stem xylem anatomical features, stomatal regulation of daily minimum leaf and stem water potential (Ψ), and the kinetics of stomatal responses to vapour pressure deficit (VPD) in six diverse woody species differing markedly in their degree of iso/anisohydry. At the stem level, more anisohydric species had higher wood density and lower native capacitance and conductivity. Like stems, leaves of more anisohydric species had lower hydraulic conductance; however, unlike stems, their leaves had higher native capacitance at their daily minimum values of leaf Ψ. Moreover, rates of VPD‐induced stomatal closure were related to intrinsic rather than native leaf capacitance and were not associated with species' degree of iso/anisohydry. Our results suggest a trade‐off between hydraulic storage and efficiency in the leaf, but a coordination between hydraulic storage and efficiency in the stem along a spectrum of plant iso/anisohydry.  相似文献   

4.

Background and Aims

The water-transport capacity of leaf venation is positively related to the leaf-lamina area, because the number and diameter of vein-xylem conduits are controlled to match the lamina area. This study aimed to investigate how this co-ordinated relationship between the leaf-lamina area and vein-xylem characteristics is achieved by examining the midrib xylem of tobacco leaves.

Methods

The changes in the midrib-xylem characteristics over time were quantified using leaves with four different final lamina areas. The measured data were fitted to sigmoidal functions. From the constants of the fitted curves, the final values in mature leaves, maximal developmental rates (VDev) and developmental duration (TDev) were estimated for each of the xylem characteristics. Whether it is the lamina or the midrib xylem that drives the co-ordinated development was examined by lamina removal from unfolding leaves. The effects of the application of 0·1 % IAA (indole-3-acetic acid) to leaves with the laminas removed were also analysed.

Key Results

For both the leaf lamina and the midrib-xylem characteristics, the differences in final values among leaves with different lamina areas were more strongly associated with those in VDev. Notably, the VDev values of the midrib-xylem characteristics were related to those of the leaf-lamina area. By lamina removal, the conduit diameter was reduced but the number of conduits did not significantly change. By IAA application, the decrease in the conduit diameter was halted, and the number of conduits in the midrib xylem increased.

Conclusions

According to the results, the VDev values of the lamina area and the midrib-xylem characteristics changed in a co-ordinated manner, so that the water-transport capacity of the midrib xylem was positively related to the leaf-lamina area. The results also suggest that IAA derived from the leaf lamina plays a crucial role in the development of the leaf venation.  相似文献   

5.
Although leaf size is one of the most responsive plant traits to environmental change, the functional benefits of large versus small leaves remain unclear. We hypothesized that modification of leaf size within species resulting from differences in irradiance can allow leaves to acclimate to different photosynthetic or evaporative conditions while maintaining an efficient balance between hydraulic supply (vein density) and evaporative demand. To test this, we compared the function and anatomy of leaf hydraulic systems in the leaves of a woody angiosperm (Toona ciliata M. Roem.) grown under high and low irradiance in controlled conditions. Our results confirm that in this species, differential leaf expansion regulates the density of veins and stomata such that leaf hydraulic conductance and stomatal conductance remain proportional. A broader sample of field-grown tree species suggested that differences in leaf venation and stomatal traits induced by sun and shade were not regulated by leaf size in all cases. Our results, however, suggest that leaf size plasticity can provide an efficient way for plants to acclimate hydraulic and stomatal conductances to the contrasting evaporative conditions of sun and shade.  相似文献   

6.
The specialized physiology of leafless, stem-succulent cacti is relatively well understood. This is not true, however, for Pereskia (Cactaceae), the 17 species of leafy trees and shrubs that represent the earliest diverging lineages of the cacti. Here we report on the water relations and photosynthesis of Pereskia guamacho, a small tree of the semiarid scrubland of Venezuela's Caribbean coast. Sapwood-specific xylem conductivity (Ksp) is low when compared to other vessel-bearing trees of tropical dry systems, but leaf-specific xylem conductivity is relatively high due to the high Huber value afforded by P. guamacho's short shoot architecture. P. guamacho xylem is not particularly vulnerable to drought-induced cavitation, especially considering the high leaf water potentials maintained year round. This is confirmed by the lack of significant variation exhibited in Ksp between wet and dry seasons. In the rainy season, P. guamacho exhibited C3-like patterns of stomatal conductance, but during a prolonged drought we documented nocturnal stomatal opening with a concomitant accumulation of titratable acid in leaves. This suggests that P. guamacho can perform drought-induced crassulacean acid metabolism (CAM photosynthesis), although delta 13C values imply that most carbon is assimilated via the C3 pathway. P. guamacho leaves display very low stomatal densities, and maximum stomatal conductance is low whether stomata open during the day or night. We conclude that leaf performance is not limited by stem hydraulic capacity in this species, and that water use is conservative and tightly regulated at the leaf level.  相似文献   

7.
Water deficits and hydraulic limits to leaf water supply   总被引:30,自引:1,他引:29  
Many aspects of plant water use -- particularly in response to soil drought -- may have as their basis the alteration of hydraulic conductance from soil to canopy. The regulation of plant water potential (Psi) by stomatal control and leaf area adjustment may be necessary to maximize water uptake on the one hand, while avoiding loss of hydraulic contact with the soil water on the other. Modelling the changes in hydraulic conductance with pressure gradients in the continuum allows the prediction of water use as a function of soil environment and plant architectural and xylem traits. Large differences in water use between species can be attributed in part to differences in their 'hydraulic equipment' that is presumably optimized for drawing water from a particular temporal and spatial niche in the soil environment. A number of studies have identified hydraulic limits as the cause of partial or complete foliar dieback in response to drought. The interactions between root:shoot ratio, rooting depth, xylem properties, and soil properties in influencing the limits to canopy water supply can be used to predict which combinations should optimize water use in a given circumstance. The hydraulic approach can improve our understanding of the coupling of canopy processes to soil environment, and the adaptive significance of stomatal behaviour.  相似文献   

8.
Recent work has shown that stomatal conductance (gs) and assimilation (A) are responsive to changes in the hydraulic conductance of the soil to leaf pathway (KL), but no study has quantitatively described this relationship under controlled conditions where steady‐state flow is promoted. Under steady‐state conditions, the relationship between gs, water potential (Ψ) and KL can be assumed to follow the Ohm's law analogy for fluid flow. When boundary layer conductance is large relative to gs, the Ohm's law analogy leads to gs = KLsoilleaf)/D, where D is the vapour pressure deficit. Consequently, if stomata regulate Ψleaf and limit A, a reduction in KL will cause gs and A to decline. We evaluated the regulation of Ψleaf and A in response to changes in KL in well‐watered ponderosa pine seedlings (Pinus ponderosa). To vary KL, we systematically reduced stem hydraulic conductivity (k) using an air injection technique to induce cavitation while simultaneously measuring Ψleaf and canopy gas exchange in the laboratory under constant light and D. Short‐statured seedlings (< 1 m tall) and hour‐long equilibration times promoted steady‐state flow conditions. We found that Ψleaf remained constant near ? 1·5 MPa except at the extreme 99% reduction of k when Ψleaf fell to ? 2·1 MPa. Transpiration, gs, A and KL all declined with decreasing k (P < 0·001). As a result of the near homeostasis in bulk Ψleaf, gs and A were directly proportional to KL (R2 > 0·90), indicating that changes in KL may affect plant carbon gain.  相似文献   

9.
10.
Correlated evolution of genome size and seed mass   总被引:2,自引:0,他引:2  
Previous investigators have identified strong positive relationships between genome size and seed mass within species, and across species from the same genus and family. Here, we make the first broad-scale quantification of this relationship, using data for 1222 species, from 139 families and 48 orders. We analyzed the relationship between genome size and seed mass using a statistical framework that included four different tests. A quadratic relationship between genome size and seed mass appeared to be driven by the large genome/seed mass gymnosperms and the many small genome size/large seed mass angiosperms. Very small seeds were never associated with very large genomes, possibly indicating a developmental constraint. Independent contrast results showed that divergences in genome size were positively correlated with divergences in seed mass. Divergences in seed mass have been more closely correlated with divergences in genome size than with divergences in other morphological and ecological variables. Plant growth form is the only variable examined thus far that explains a greater proportion of variation in seed mass than does genome size.  相似文献   

11.
Chaparral shrubs in California experience cool, wet winters and hot, dry summers characteristic of mediterranean-type climates; by contrast, morphologically similar close relatives in central Mexico experience summer rainfall. A comparison of closely related species pairs was conducted to examine whether evolutionary divergences in plant hydraulic conductivity were associated with contrasting seasonality of precipitation. Six species pairs in Santa Barbara, California and Tehuacan, Mexico were chosen to test for repeated directional divergences across the habitat contrast. Additionally, evolutionary correlations were examined using phylogenetically independent contrasts (PICs) among a suite of hydraulic traits, including stem- and leaf-specific conductivity, resistance to embolism, wood density, inverse Huber value, and minimum seasonal water potential. Leaf-specific conductivity was generally higher in California, but for most hydraulic traits the species pairs exhibited varied evolutionary trajectories across the climate contrast. A significant correlation was found between divergences in xylem resistance to embolism and minimum seasonal water potential, but no evolutionary trade-off was found between resistance and stem conductivity. Higher leaf-specific conductivity may be adaptive in California, where soil and atmospheric droughts coincide during summer months. This response is consistent with a hydraulic strategy of high leaf water supply under high evaporative demand to prevent excessive drops in water potential.  相似文献   

12.
树木叶片的水力效率和安全性会对水分条件的改变做出一定的响应, 进而影响树木的生长和分布, 然而叶导水率(Kleaf)和叶水力脆弱性(P50)对不同水分条件的响应模式及其影响因素尚不清楚。该研究选取了晋西北关帝山和黑茶山两种水分条件下的8种树种, 测量其水力性状、叶片导管和形态性状, 比较两地不同树种的KleafP50的变化, 分析叶片水力效率和安全性之间的权衡关系, 并探讨叶片水力性状在不同树种及水分条件下的响应模式及其驱动因素。结果表明: 对同一树种而言, 湿润的关帝山叶最大导水率(Kmax)和P50均高于干旱的黑茶山; 对同一地区而言, 从在高水分条件下生长的树种到在易干旱环境生长的树种, KmaxP50均逐渐下降。KmaxP50、膨压丧失点水势(TLP)之间均存在显著相关关系。两地叶片P50与导管密度、导管塌陷预测值((t/b)3)、叶片厚度、比叶质量显著正相关, 与导管直径、叶面积显著负相关, 不同树种的KleafP50与叶导管性状的关系大于叶形态性状。同一树种的关帝山到黑茶山P50变化量(δP50)与比叶质量和叶干物质含量在两地的变化量显著正相关, 同一树种δP50与叶形态性状变化量的关系大于与叶导管性状的。以上结果表明: 随着水分条件变差, 叶片水力效率降低, 水力安全性提高, 不同树种叶片水力效率与安全性之间存在一定的权衡关系, 不同树种叶水力性状的差别受叶导管性状影响的程度大于受叶形态性状的影响, 同一树种叶水力安全性对水分条件变化的响应主要依靠叶形态性状的驱动, 树木在提高自身叶水力安全的同时增加了叶构建的碳投资。  相似文献   

13.
Steady-state leaf gas-exchange parameters and leaf hydraulic conductance were measured on 10 vascular plant species, grown under high light and well-watered conditions, in order to test for evidence of a departure from hydraulic homeostasis within leaves as hydraulic conductance varied across species. The plants ranged from herbaceous crop plants to mature forest trees. Across species, under standardized environmental conditions (saturating light, well watered), mean steady-state stomatal conductance to water vapour (g(w)) was highly correlated with mean rate of CO2 assimilation (A) and mean leaf hydraulic conductance normalized to leaf area (k(leaf)). The relationship between A and g(w) was well described by a power function, while that between A and k(leaf) was highly linear. Non-linearity in the relationship between g(w) and k(leaf) contributed to an increase in the hydrodynamic (transpiration-induced) water potential drawdown across the leaf (delta psi(leaf)) as k(leaf) increased across species, although across the 10 species the total increase in delta psi(leaf) was slightly more than twofold for an almost 30-fold increase in g(w). Higher rates of leaf gas exchange were therefore associated with higher k(leaf) and higher leaf hydrodynamic pressure gradients. A mechanistic model incorporating the stomatal hydromechanical feedback loop is used to predict the relationship between delta psi(leaf) and k(leaf), and to explore the coordination of stomatal and leaf hydraulic properties in supporting higher rates of leaf gas exchange.  相似文献   

14.
Xylem maturation in elongating leaf blades of tall fescue ( Festuca arundinacea ) was studied using staining and microcasting. Three distinctive regions were identified in the blade: (1) a basal region, in which elongation was occurring and protoxylem (PX) vessels were functioning throughout; (2) a maturation region, in which elongation had stopped and narrow (NMX) and large (LMX) metaxylem vessels were beginning to function; (3) a distal, mature region in which most of the longitudinal water movements occurred in the LMX. The axial hydraulic conductivity ( K h) was measured in leaf sections from all these regions and compared with the theoretical axial hydraulic conductivity ( K t) computed from the diameter of individual inner vessels. K t was proportional to K h throughout the leaf, but K t was about three times K h. The changes in K h and K t along the leaf reflected the different stages of xylem maturation. In the basal 60 mm region, K h was about 0.30±0.07 mmol s−1 mm MPa−1. Beyond that region, K h rapidly increased with metaxylem element maturation to a maximum value of 5.0±0.3 mmol s−1 mm MPa−1, 105 mm from the leaf base. It then decreased to 3.5±0.2 mmol s−1 mm MPa−1 near the leaf tip. The basal expanding region was observed to restrict longitudinal water movement. There was a close relationship between the water deposition rate in the elongation zone and the sum of the perimeters of PX vessels. The implications of this longitudinal vasculature on the partitioning of water between growth and transpiration is discussed.  相似文献   

15.
Across eukaryotes phenotypic correlations with genome size are thought to scale from genome size effects on cell size. However, for plants the genome/cell size link has only been thoroughly documented within ploidy series and small subsets of herbaceous species. Here, the first large-scale comparative analysis is made of the relationship between genome size and cell size across 101 species of angiosperms of varying growth forms. Guard cell length and epidermal cell area were used as two metrics of cell size and, in addition, stomatal density was measured. There was a significant positive relationship between genome size and both guard cell length and epidermal cell area and a negative relationship with stomatal density. Independent contrast analyses revealed that these traits are undergoing correlated evolution with genome size. However, the relationship was growth form dependent (nonsignificant results within trees/shrubs), although trees had the smallest genome/cell sizes and the highest stomatal density. These results confirm the generality of the genome size/cell size relationship. The results also suggest that changes in genome size, with concomitant influences on stomatal size and density, may influence physiology, and perhaps play an important genetic role in determining the ecological and life-history strategy of a species.  相似文献   

16.
The possible link between stomatal conductance (gL), leaf water potential ( Ψ L) and xylem cavitation was studied in leaves and shoots of detached branches as well as of whole plants of Laurus nobilis L. (Laurel). Shoot cavitation induced complete stomatal closure in air‐dehydrated detached branches in less than 10 min. By contrast, a fine regulation of gL in whole plants was the consequence of Ψ L reaching the cavitation threshold ( Ψ CAV) for shoots. A pulse of xylem cavitation in the shoots was paralleled by a decrease in gL of about 50%, while Ψ L stabilized at values preventing further xylem cavitation. In these experiments, no root signals were likely to be sent to the leaves from the roots in response to soil dryness because branches were either detached or whole plants were growing in constantly wet soil. The stomatal response to increasing evaporative demand appeared therefore to be the result of hydraulic signals generated during shoot cavitation. A negative feedback link is proposed between gL and Ψ CAV rather than with Ψ L itself.  相似文献   

17.
解析植物木质部导水率对逆境的响应和适应对促进植物抗逆性机理研究和受损植被恢复具有重要意义。该文以荒漠河岸林建群种胡杨(Populus euphratica)为研究对象,系统分析了胡杨幼株根、茎、叶水分传输通道对不同浓度盐胁迫的响应和适应。结果表明:(1)胡杨幼株根系对盐胁迫的敏感性高于茎和叶,盐胁迫下根系生长和根尖数显著受到抑制,根木质部易于发生栓塞,导水率明显降低。(2)胡杨幼株茎木质部导水率对盐胁迫的响应依盐浓度而定,轻度(0.05 mol·L–1 Na Cl)和中度(0.15 mol·L–1 Na Cl)盐胁迫下,胡杨可以通过协调导管输水的有效性和安全性来调节木质部的导水率,维持植物正常生长;重度(0.30 mol·L–1 Na Cl)盐胁迫下,胡杨茎木质部导管输水有效性和安全性均明显降低,木质部导水率显著下降,并伴随叶片气孔导度的显著降低,从而严重抑制了胡杨的光合和生长。  相似文献   

18.
Cavitation resistance is a critical determinant of drought tolerance in tropical tree species, but little is known of its association with life history strategies, particularly for seasonal dry forests, a system critically driven by variation in water availability. We analysed vulnerability curves for saplings of 13 tropical dry forest tree species differing in life history and leaf phenology. We examined how vulnerability to cavitation (P50) related to dry season leaf water potentials and stem and leaf traits. P50‐values ranged from ?0.8 to ?6.2 MPa, with pioneers on average 38% more vulnerable to cavitation than shade‐tolerants. Vulnerability to cavitation was related to structural traits conferring tissue stress vulnerability, being negatively correlated with wood density, and surprisingly maximum vessel length. Vulnerability to cavitation was negatively related to the Huber‐value and leaf dry matter content, and positively with leaf size. It was not related to SLA. We found a strong trade‐off between cavitation resistance and hydraulic efficiency. Most species in the field were operating at leaf water potentials well above their P50, but pioneers and deciduous species had smaller hydraulic safety margins than shade‐tolerants and evergreens. A trade‐off between hydraulic safety and efficiency underlies ecological differentiation across these tropical dry forest tree species.  相似文献   

19.
This study investigated the mechanisms involved in the regulation of stomatal closure in Douglas-fir and evaluated the potential impact of compensatory adjustments in response to increasing tree height upon these mechanisms. In the laboratory, we measured leaf hydraulic conductance (K(leaf)) as leaf water potential (Psi(l)) declined for comparison with in situ diurnal patterns of stomatal conductance (g(s)) and Psi(l) in Douglas-fir across a height gradient, allowing us to infer linkages between diurnal changes in K(leaf) and g(s). A recently developed timed rehydration technique was used in conjunction with data from pressure-volume curves to develop hydraulic vulnerability curves for needles attached to small twigs. Laboratory-measured K(leaf) declined with increasing leaf water stress and was substantially reduced at Psi(l) values of -1.34, -1.45, -1.56 and -1.92 MPa for foliage sampled at mean heights of approximately 20, 35, 44 and 55 m, respectively. In situ g(s) measurements showed that stomatal closure was initiated at Psi(l) values of -1.21, -1.36, -1.74 and -1.86 MPa along the height gradient, which was highly correlated with Psi(l) values at loss of K(leaf). Cryogenic scanning electron microscopy (SEM) images showed that relative abundances of embolized tracheids in the central vein increased with increasing leaf water stress. Leaf embolism appeared to be coupled to changes in g(s) and might perform a vital function in stomatal regulation of plant water status and water transport in conifers. The observed trends in g(s) and K(leaf) in response to changes in Psi(l) along a height gradient suggest that the foliage at the tops of tall trees is capable of maintaining stomatal conductance at more negative Psi(l). This adaptation may allow taller trees to continue to photosynthesize during periods of greater water stress.  相似文献   

20.
胡杨木质部水分传导对盐胁迫的响应与适应   总被引:2,自引:0,他引:2       下载免费PDF全文
解析植物木质部导水率对逆境的响应和适应对促进植物抗逆性机理研究和受损植被恢复具有重要意义。该文以荒漠河岸林建群种胡杨(Populus euphratica)为研究对象, 系统分析了胡杨幼株根、茎、叶水分传输通道对不同浓度盐胁迫的响应和适应。结果表明: (1)胡杨幼株根系对盐胁迫的敏感性高于茎和叶, 盐胁迫下根系生长和根尖数显著受到抑制, 根木质部易于发生栓塞, 导水率明显降低。(2)胡杨幼株茎木质部导水率对盐胁迫的响应依盐浓度而定, 轻度(0.05 mol·L-1 NaCl)和中度(0.15 mol·L-1 NaCl)盐胁迫下, 胡杨可以通过协调导管输水的有效性和安全性来调节木质部的导水率, 维持植物正常生长; 重度(0.30 mol·L-1 NaCl)盐胁迫下, 胡杨茎木质部导管输水有效性和安全性均明显降低, 木质部导水率显著下降, 并伴随叶片气孔导度的显著降低, 从而严重抑制了胡杨的光合和生长。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号