共查询到20条相似文献,搜索用时 15 毫秒
1.
J. V. Kilmartin 《The Biochemical journal》1973,133(4):725-733
1. Inositol hexaphosphate causes the shape of the oxidation-reduction equilibrium curve to become hyberbolic at acid pH values. 2. Inositol hexaphosphate also causes a decrease in the alkaline oxidation Bohr effect at these same pH values. 3. These results support the idea that inositol hexaphosphate causes methaemoglobin to take up the deoxyhaemoglobin quaternary structure at pH6.5. 相似文献
2.
Inositol hexaphosphate (IHP)1 increases the rate of the NADH-methemoglobin reductase reaction at neutral pH. This effect is apparently associated with the change in conformation of methemoglobin induced by its interaction with IHP. It is consistent with the suggestion that IHP stabilizes the quarternary T type of structure in methemoglobin. 相似文献
3.
4.
5.
Effect of inositol hexaphosphate on hemoglobin oxidation by nitrite and ferricyanide 总被引:1,自引:0,他引:1
Akio Tomoda Shigeru Matsukawa Masazumi Takeshita Yoshimasa Yoneyama 《Biochemical and biophysical research communications》1977,74(4):1469-1474
In the presence of inositol hexaphosphate (IHP), the rate of hemoglobin oxidation by nitrite was much inhibited; however, that of the hemoglobin oxidation by ferricyanide was much accelerated. The difference in the reaction mode was discussed in relation to the interaction of hemoglobin with IHP. The dissociation constant of IHP to oxyhemoglobin was estimated from the rate of the hemoglobin oxidation by ferricyanide in different concentrations of IHP under oxygen saturated conditions. 相似文献
6.
J S Olson 《The Journal of biological chemistry》1976,251(2):447-458
The observed static difference spectrum produced by inositol hexaphosphate binding to methemoglobin is the sum of a very fast and a slow spectral transition. The more rapid absorbance change is too fast to be measured by stopped flow techniques, whereas the slow change exhibits a half-time in the range 1 to 6 s. From the pH dependence of the rapidly formed difference spectrum and from a series of heme ligand binding studies, the rapid phase is interpreted to reflect a localized tertiary conformational change which immediately accompanies inositol hexaphosphate binding and results in a selective increase in spin and reactivity of the beta chain heme groups. In contrast, the slow phase appears to reflect a first order isomerization process which involves only a small portion (less than 10%) of the hemoglobin molecules and results primarily in a marked alteration of the spectral properties of the alpha chains with little change in spin. While the rapid spectral transition cannot be directly related to the overall quaternary transition which occurs during oxygen binding to ferrous deoxyhemoglobin, the slow spectral transition may represent the abortive formation of a deoxyhemoglobin A-like conformation which is inhibited in both rate and extent by the presence of water molecules bound to the heme iron atoms. 相似文献
7.
Inositol hexaphosphate (IHP) binds to deoxyhemoglobin and markedly decreases the affinity of hemoglobin for oxygen. We introduce here a method for incorporating this polyphosphate into erythrocytes, thus preparing very low affinity cells for use in respiration research. The method uses dimethyl sulfoxide (DMSO) to facilitate entry of IHP. The cells are exposed to a high concentration of DMSO which is rapidly diluted with IHP solution. During this dilution the cells become leaky and IHP enters. The influence of several variables at each step of the process has been investigated and the data support a transient osmotic gradient mechanism for IHP incorporation. 相似文献
8.
The two apical cells of the mesozoan dispersal larva, a 28 cell organism, are filled with a dense refractile material that accounts for up to half the weight of the larva. This material has been shown to consist of a single compound and has been identified as the highly hydrated magnesium salt of inositol hexaphosphate; its abundance reflects an extreme degree of specialization in the apical cells and the fact that the dominant activity of the developing larva must be the synthesis of this compound. 相似文献
9.
S el Ouggouti O Bournier P Boivin O Bertrand D Dhermy 《Protein expression and purification》1992,3(6):488-496
Protein 4.1 is a multifunctional structural protein occupying a strategic position in the erythrocyte membrane. It is present in the erythrocyte membrane skeleton and in many nonerythroid cells. This report describes a novel method for purifying this protein based on its selective interaction with inositol hexaphosphate dimagnesium tetrapotassium salt. This interaction was discovered in the course of chromatography of high-salt extract of inside-out membrane vesicles on Procion orange MX-2R-Sepharose. The new procedure is simple and selective and produces protein 4.1 with better yield than that obtained with a previously published procedure. The purified protein 4.1 has the same immunoreactivity and the same alpha-chymotryptic digest profile as protein 4.1 purified by published methods and is fully functional in enhancing the interaction between F-actin and spectrin dimers. 相似文献
10.
J W Wyse R S Franco R Barker M A Yacko D A Butterfield 《Biochimica et biophysica acta》1990,1022(1):87-92
In previous studies (Biochem. Biophys. Res. Commun. 144, 779-786 (1987); Prog. Clin. Biol. Res. 292, 65-75 (1989)), we showed that inositol hexaphosphate (IHP), when added to erythrocyte membrane ghosts in the range 0.6-2.5 mM, caused a large disruption of skeletal protein-protein interactions as monitored by electron paramagnetic resonance techniques. IHP incorporated into intact cells by an osmotic-pulse method (J. Cell. Physiol. 129, 221-229 (1986)) leads to cells with markedly decreased oxygen affinity. Exposure of the red cells to higher levels of IHP during the osmotic pulse leads to less lysis and more normal cellular indices after healing of the transiently-disrupted membrane (J. Lab. Clin. Med. 113, 58-66 (1989)). In order to determine what effect higher levels of IHP had on skeletal proteins and bilayer lipids of membrane ghosts, spin labeling studies were performed. The main findings were: (a) There was a concentration-dependent alteration in skeletal protein interactions. At concentrations greater than 25 mM IHP, the effectiveness of IHP to disrupt skeletal protein interactions was diminished. (b) No apparent alteration of the motion or order of phospholipids or the lipid water interface of intact cells into which IHP was incorporated occurred, suggesting that higher levels of IHP do not alter the physical state of the lipid bilayer. 相似文献
11.
The aggregation of deoxyhemoglobin dimers was studied by dropping the pH of a dilute solution of deoxyhemoglobin originally at high pH. In the presence of inositol hexaphosphate, a sharp increase in the rate of dimer association was observed. At higher concentrations of the phosphate, the rate decreased to a value close to that seen in the absence of phosphate. These observations require that inositol hexaphosphate binds to deoxyhemoglobin dimers. The dependence of the aggregation rate on phosphate concentration occurs because the reaction of a dimer containing bound phosphate with a phosphate-free dimer is 30 to 50 times faster than either the association of phosphate-free dimers or the association of dimers both containing bound phosphate. 相似文献
12.
B. Ahmed 《Plant and Soil》1976,44(1):253-256
Summary Mineralization of inositol hexaphosphate in soils increased at all moisture levels during 60 days incubation. Water-logging influenced the mineralization process to the greatest extent probably by inducing a conducive environment optimum for proliferating phytase-producing microorganisms. 相似文献
13.
14.
The visible and proton NMR spectral responses of imidazole methemoglobin by the binding of inositol hexaphosphate were examined in the 2-40 degrees C range. The magnitude of the +/- (inositol hexaphosphate) visible difference spectrum increased and the intensity of the 33 ppm NMR peak decreased with lowering of the temperature. The NMR results were quantitatively analyzed with a simple two-state allosteric model. The results show that the T conformer fraction is 0.6 at 20 degrees C and that the equilibrium shifts toward the T state at lower temperature. The large changes in delta H and delta S associated with the equilibrium suggest participation of numerous factors in the determination of the equilibrium position. The increase in the T conformer population of imidazole methemoglobin, which is pure low-spin, suggests that the appearance of the T state with decreasing temperature is not directly coupled to an increase in spin of the heme iron. 相似文献
15.
The tetramer-dimer equilibria of various forms of methemoglobin have been measured by sedimentation equilibrium to test the hypothesis of Perutz that high spin derivatives can be switched by inositol hexaphosphate (Inos-P6) from the R state to the T state more readily than low spin derivatives. Since transitions from the R state to the T state are accompanied by a decrease in the tetramer-dimer dissociation constant (K4,2), this parameter is a quantitative indicator of the conformational state. Measurements of K4,2 were performed using an analytical ultracentrifuge with absorption optics and a scanner-computer system. Statistical analysis of the sedimentation data indicated that the stoichiometry if Inos-P6 binding is 1 molecule/hemoglobin tetramer and 2 molecules/hemoglobin dimer. The apparent affinity of the dimer sites for Inos-P6 is much lower than the corresponding value for the tetramer site. As a result of the stoichiometries, at low concentrations Inos-P6 shifts the tetramer-dimer equilibrium in favor of the tetramer, but at high concentrations Inos-P6 shifts the equilibrium in favor of the dimer. Te tetramer binding site for Inos-P6 of various liganded forms of hemoglobin appears to be the same as has been established for deoxyhemoglobin, since the effect of Inos-P6 on subunit dissociation is reduced in pyridoxylated derivatives. Values of K4,2 for aquo-, azido- and cyanomethemoglobin in 0.01 M 2,2-bis(hydroxymethyl)-2,2',2'-nitroethanol buffer, pH 6.0/0.1 M NaCl, are all near 2 X 10(-5) M. Upon addition of 50 muM Inos-P6 the values of K4,2 for all three forms are shifted to near 10(-9) M. Since the aquo derivative is high spin, while the azido and cyano derivatives are low spin, the similarity of values for the derivatives in the presence and absence of Inos-P6 indicate that the changes in K4,2 are not spin-spin state dependent. For another high spin derivative, fluoromethemoglobin, such high concentrations of NaF are required that ionic strength effects are encountered. When data at several NaF concentrations are extrapolated to 0.1 M NaF to correct for the ionic strength effects, values of K4,2 of 7 X 10(-6) M and 10(-8) M are obtained for solutions in the absence and in the presence of 50 muM Inos-P6, respectively. Therefore the results with the fluoro derivative, in conjunction with the other forms of methemoglobin, support the view that high spin derivatives do not exhibit a greater response to Inos-P6 than low spin derivatives. 相似文献
16.
17.
We have applied the residual dipolar coupling (RDC) method to investigate the solution quaternary structures of (2)H- and (15)N-labeled human normal adult recombinant hemoglobin (rHb A) and a low-oxygen-affinity mutant recombinant hemoglobin, rHb(alpha96Val-->Trp), both in the carbonmonoxy form, in the absence and presence of an allosteric effector, inositol hexaphosphate (IHP), using a stretched polyacrylamide gel as the alignment medium. Our recent RDC results [Lukin, J. A., Kontaxis, G., Simplaceanu, V., Yuan, Y., Bax, A., and Ho, C. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 517-520] indicate that the quaternary structure of HbCO A in solution is a dynamic ensemble between two previously determined crystal structures, R (crystals grown under high-salt conditions) and R2 (crystals grown under low-salt conditions). On the basis of a comparison of the geometric coordinates of the T, R, and R2 structures, it has been suggested that the oxygenation of Hb A follows the transition pathway from T to R and then to R2, with R being the intermediate structure [Srinivasan, R., and Rose, G. D. (1994) Proc. Natl. Acad. Sci. U.S.A. 91, 11113-11117]. The results presented here suggest that IHP can shift the solution quaternary structure of HbCO A slightly toward the R structure. The solution quaternary structure of rHbCO(alpha96Val-->Trp) in the absence of IHP is similar to that of HbCO A in the presence of IHP, consistent with rHbCO(alpha96Val-->Trp) having an affinity for oxygen lower than that of Hb A. Moreover, IHP has a much stronger effect in shifting the solution quaternary structure of rHbCO(alpha96Val-->Trp) toward the R structure and toward the T structure, consistent with IHP causing a more pronounced decrease in its oxygen affinity. The results presented in this work, as well as other results recently reported in the literature, clearly indicate that there are multiple quaternary structures for the ligated form of hemoglobin. These results also provide new insights regarding the roles of allosteric effectors in regulating the structure and function of hemoglobin. The classical two-state/two-structure allosteric mechanism for the cooperative oxygenation of hemoglobin cannot account for the structural and functional properties of this protein and needs to be revised. 相似文献
18.
19.
20.
The influence of inositol hexakisphosphate (IHP) and its cupric ion chelate complexes on alkaline phosphatase (APase) catalysis of p-nitrophenyl phosphate hydrolysis at pH 7.2 has been determined. Both IHP and (IHP-Cu) complexes, but not Cu(II) alone, are effective inhibitors of the enzyme and are of the strictly competitive type with Ki values in the microM range. Without added inhibitors present, the kinetic parameters are kcat 5.7 x 10(3) min(-1); and KM, 18 microM. In the presence of 62 microM IHP, kcat was essentially unchanged with an apparent KM of 68 microM giving a Ki of 22 microM. In the presence of an (IHP-Cu) complex (62 microM IHP, 128 microM Cu(II], the apparent KM was 55 microM and Ki was 30 microM. At a ratio of Cu(II):IHP of 6.0 (372:62 microM) the apparent KM was 30 microM and Ki was 94 microM. The inhibitory effect of (IHP-Cu) complexes thus decreases as the IHP binding sites for cupric ions become saturated. A high ionic strength environment markedly reduces the inhibitory effect of IHP. Previous studies have also shown that rates of APase inactivation by (IHP-Cu) complexes are also ionic strength sensitive [1]. The inhibition of APase activity by either IHP or its coordinate complexes with cupric ions is evidence for their interaction at the enzyme's catalytic sites. Such results thus provide support for an essential element of the mechanism previously suggested for the reversible inactivation (as opposed to inhibition) of APase by (IHP-Cu) chelate complexes, viz., that it may be due to a metal ion exchange reaction leading to the formation of a Cu(II)-substituted enzyme. 相似文献