首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Kashkaval cheese is produced with a traditional yogurt starter culture S. thermophilus 13a + Lb. delbrueckii ssp. bulgaricus 2–11. The present paper has investigated the contribution of a selected starter culture (Lactococcus lactis ssp. lactis C11 + Streptococcus thermophilus P23 + Lactobacillus casei ssp. casei RP5) for proteolysis of Kashkaval (A) in comparison with a traditional yogurt culture (B) and soluble nitrogen (at pH 4.6 and in 12% TCA) and free amino acids as indicators of Kashkaval ripeness. After the microflora was isolated and differentiated, the largest count of mesophilic cocci (69%) and lower counts of thermophilic cocci (19.8%) and mesophilic lactobacilli (11.2%) were found in cheddared curd A, whereas in cheddared curd B thermophilic cocci (69%) prevailed over thermophilic lactobacilli (30%). Hot-brining of curd at 72 °C for 2 min destroyed 91 and 84.5%, respectively, of the starter microflora A and B and two batches of Kashkaval started ripening with 3.9 × 108 c.f.u. g−1 and 3.4 × 108 c.f.u. g−1. The ripening of Kashkaval cheese occurred mainly under the influence of the starter microflora. Ripening of Kashkaval A occurred with dominating presence of Lactobacillus casei ssp. casei RP5 from 64% at day 30 to 95.2% at day 90. In Kashkaval B the participation of Lactobacillus delbrueckii ssp. bulgaricus 2–11 increased from 36.3 to 39.9%, however it always remained relatively smaller (1.5–2.3-fold) than that of thermophilic cocci. Great activity of transformation of pH 4.6-soluble nitrogen into TCA-soluble nitrogen in Kashkaval A was registered. The high proteolytic activity of starter culture A shortened the ripening process by 30 days (30-day-old Kashkaval A had 17.3% level of proteolysis, 29.9% depth of proteolysis). Kashkaval B reached satisfactory ripeness properties when it was 60 days old (20.2% level of proteolysis, 24.9% depth of proteolysis). The high activity of amino acid release mainly by Lactobacillus casei ssp. casei RP5 and to a lesser extent by the cocci caused accumulation of a considerable amount of free amino acids in ripe Kashkaval A (421.9 mg (100 g)−1 for 30-day-old Kashkaval). In ripe 30-day-old Kashkaval A the concentration of free amino acids was three times higher than in Kashkaval B, with domination of lysine, leucine, phenylalanine, valine and threonine.  相似文献   

2.
Summary The changes in the number of the starter microorganisms Lb. delbrueckii subsp. bulgaricus and Str. thermophiluswere followed in frozen-stored Kashkaval cheese made from cow’s milk. Kashkaval samples of various aging times were produced industrially, frozen at T=−16 °C and stored at T=−10 to −12 °C for 12 months. It was found that the number of Lb. delbrueckiisubsp. bulgaricus and Str. thermophilusdecreased considerably during frozen storage. The decrease was more substantial for Lb. delbrueckiisubsp. bulgaricus, which was evidence for its greater sensitivity to the impact of low temperatures. The aging time of Kashkaval did not influence the changes in the starter culture during frozen storage but is important for its amount in the product aged after defrosting. There was an increase in the Str. thermophilus: Lb. delbrueckiisubsp. bulgaricus ratio in samples with shorter aging time subjected to frozen storage and aged after defrosting. The changes in the starter culture in frozen stored Kashkaval cheese can be controlled by an appropriate combination of the two factors: aging time and period of frozen storage.  相似文献   

3.
Proteolytic activity of Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus in Kashkaval cheeses of varying aging times, stored at −10 to −12°C for 12 months, was studied. It was established that the proteolysis of Kashkaval cheese induced by the starter culture was significantly delayed by freezing. The noncasein nitrogen (NCN/TN) and nonprotein nitrogen (NPN/TN) as a percentage of total nitrogen increased slightly during frozen storage of Kashkaval. It was found that NCN/TN and NPN/TN values increased to a larger extent in frozen-stored Kashkaval samples with shorter aging time. Enhanced proteolysis was observed during ripening of thawed Kashkaval cheese. There was greater accumulation of noncasein nitrogen in thawed Kashkaval samples compared to the control samples. The enhanced proteolysis during ripening of thawed Kashkaval cheese resulted in larger amounts of high and medium molecular weight peptides and lower amounts of low molecular weight peptides and free amino acids as compared to controls.  相似文献   

4.
The production of pediocin in milk by Pediococcus acidilactici was evaluated in co-culture with the dairy fermentation cultures Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus. The cultures were tested singly and in different combinations in milk (0 or 2% fat content) during incubation at 40°C for up to 10 h. Cell-free milk samples taken every 60 min were tested for bacteriocin activity against Listeria monocytogenes. Pediocin activity was not detectable when P. acidilactici was inoculated into milk as a monoculture. When P. acidilactici was grown in combination with the yogurt starter cultures S. thermophilus and Lb. delbrueckii ssp. bulgaricus, pediocin concentration reached 3,200–6,400 units ml−1 after 8 h of incubation. The results showed that pediocin producing pediococci may be useful adjunct components in mixed cultures of S. thermophilus and Lb. delbrueckii ssp. bulgaricus to amplify the bioprotective properties of fermented dairy foods against Listeria contamination.  相似文献   

5.
Four different strains ofLactobacillus delbrueckii subsp.bulgaricus (Ss1 and Yop12) andStreptococcus salivarius subsp.thermophilus (Ss2 and Yop9) were isolated from two different yogurt sources in Argentina. In medium containing different carbon sources: lactose, fructose, sucrose or glucose plus fructose, the growth of a mixed culture (Yop12+Ss2) shows stimulation ofS. thermophilus and inhibition ofL. bulgaricus with respect to pure cultures. Both microorganisms in mixed culture grew less well on glucose plus galactose. However, in medium with glucose or galactose, both microorganisms were stimulated.  相似文献   

6.
A yogurt culture (Streptococcus thermophilus 15HA + Lactobacillus delbrueckii subsp. bulgaricus 2-11) was studied in conditions of aerobic batch fermentation (10–40% dissolved oxygen in milk). The growth and acidification of S. thermophilus 15HA were stimulated at 20% oxygen concentration and the lactic acid process in a mixed culture was shortened by 1 h (2.5 h for the aerobic culture and 3.5 h for the anaerobic mixed culture). Streptococcus thermophilus 15HA oxygen tolerance was significantly impaired at oxygen concentrations in the milk above 30%. Though S. thermophilus 15HA was able to overcome to some extent the impact of high oxygen concentration (40%), the lactic acid produced was insufficient to coagulate the milk casein (4.0 g lactic acid l−1 in the mixed culture and 3.8 g lactic acid l−1 in the pure culture). A dramatic decrease in the viable cell count of L. delbrueckii subsp. bulgaricus 2-11 in the pure and mixed cultures was recorded at 30% dissolved oxygen. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Exopolysaccharide (EPS) preparations from Lactobacillus delbrueckii ssp. bulgaricus (L. bulgaricus) strains LBB.B26 and LBB.B332 and Streptococcus thermophilus strains LBB.T54 and LBB.T6V were characterized using ion-exchange chromatography and gel filtration. All four preparations contained a neutral EPS with molecular mass in the range of 1.3−1.6 × 106 Da (HMM-EPS). The EPS preparations from the two L. bulgaricus strains also contained an acidic low molecular mass EPS fraction (LMM-EPS) comprising from 10% to 34% of the total EPS yield. HMM-EPS preparations were subjected to High Pressure Liquid Chromatography (HPLC) analysis of monomer sugars after complete hydrolysis. Glucose, galactose and/or rhamnose in different ratios proved to be the principal sugars building the HMM-EPS from all four strains. The chemical composition of HMM-EPS was strictly strain-specific. The LMM-EPS contained galactose. The viscosifying properties of the four different HMM-EPS varied greatly with intrinsic viscosity in the range from 0.26 (strain B26) to 2.38 (strain T6V). For 24 h the two L. bulgaricus strains accumulated more HMM-EPS in milk (>70 mg l−1) than S. thermophilus strains T54 and T6V (<30 mg l−1), but maximal yields were reached earlier with cocci (8 h) than with rods (16–24 h). The contribution of HMM-EPS production to increased viscosity of fermented milk was demonstrated for all of the tested strains grown as monocultures or as mixed yogurt starters compared to non-EPS producing S. thermophilus LBB.A and poor EPS-producer L. bulgaricus LBB.B5. The extent of increased viscosity was strongly dependent on the nature of the produced HMM-EPS, rather than simply on polymer yield.  相似文献   

8.
We isolated a total of 266 strains of lactic acid bacteria (LAB) from 28 dahi samples that were collected from different areas in Bangladesh. The isolated strains were identified on basis of their morphological, physiological and biochemical characteristics, the lactic acid isomer produced, the ability to ferment sugars and 16S rDNA analysis. Among the isolates, the cocci (73%) were dominant over the rods (27%). The distribution of the isolates by genus was as follows: Streptococcus (50%), Lactobacillus (27%), Enterococcus (9%), Leuconostoc (5%), Lactococcus (5%) and Pediococcus (4%). In this study, S. bovis was the most predominant species as this species represents 47.0% of the total isolates in dahi. The other species we isolated were identified as Lb. fermentum, Lb. delbrueckii ssp. bulgaricus, Lb. delbrueckii ssp. lactis, Lb. sp., Ec. faecium, S. thermophilus, Leuc. mesenteroides ssp. mesenteroides, Leuc. mesenteroides ssp. dextranicum, Lc. lactis ssp. lactis, Lc. raffinolactis and P. pentosaceus.  相似文献   

9.
Three-component starters for yogurt were obtained on the base of starter LBB.BY 5-12 for traditional Bulgarian yogurt, containing strains Lactobacillus delbrueckii ssp. bulgaricus B5 and Streptococcus thermophilus A with the addition of either an exopolysaccharide-producing S. thermophilus strain 6V or the fast acidifying S. thermophilus strain N1. To differentiate between the three strains in the starter cultures, randomly amplified polymorphic DNA (RAPD) technique was applied to develop strain-specific probes. Southern hybridization against dot-blots of chromosomal DNA from the three S. thermophilus strains confirmed that two probes, derived from a 770 bp RAPD product obtained with primer RAPD-4 and a 290 bp sequence obtained with primer OPP-7 were specific for S. thermophilus 6V and S. thermophilus A, respectively, while no hybridization to S. thermophilus N1 DNA was observed. The selected probes were used to differentiate between S. thermophilus colonies on a solid agar medium by colony hybridization. The evaluation of the viable cell counts revealed that the populations of S. thermophilus A and the added S. thermophilus strains 6V or N1 in the three-component starters and in yogurt had nearly equal proportion allowing each strain to contribute to the enriched properties of starter and product.  相似文献   

10.
Summary The aim of this study was to investigate the microbiological quality and the indigenous lactic acid bacteria (Lactobacillus) of Civil cheese. In this study, for identification of lactic acid bacteria isolated from cheese samples, the Microbiology Identification System (MIS) was used. In the samples, average of total aerobic mesophilic bacteria, yeast and moulds, lactic acid bacteria and Staphylococcus aureus (Staph. aureus) were determined to be 3.0×108, 2.0×106, 1.4×107, 4.10×104 c.f.u./g, respectively. Coliform bacteria were lower than <10 c.f.u./g in 26.67 % of the samples. On the other hand, the coliform-positive samples showed an average of 4.2×104 c.f.u./g. Staph. aureus was not detected in 33.33% of Civil cheese samples. Seventy-two strains of Lactobacillus isolated from Civil cheese were identified. Growth at 5, 10 and 37 °C, 2.5% and 6.5% NaCl and gas (CO2) production from glucose of the isolated strains were also determined. Of the 72 isolates, 20 were identified as Lb. malefermentans, 18 as Lb. fermentum, 17 as Lb. parabuchneri, 10 as Lb. vaccinostercus, 2 as Lb. oris, 1 as Lb. bifermentans, 1 as Lb. delbruecki subsp. bulgaricus, 1 as Lb. cellobiosus, 1 as Lb. hilgardii, 1 as Lb. paracasei subsp. tolerans.  相似文献   

11.
Summary The influence of various storage solutions and temperature (4°C and 25°C) on viability ofStreptococcus salivarius subsp.thermophilus andLactobacillusdelbrueckii subsp.bulgaricus entrapped in κ-carrageenan-locust bean gum mixed gel beads was studied. The immobilized strains could be stored at 4°C in all storage solutions studied for at least 14 and 11 days respectively before counts decreased to 105c.f.u./mL, which was considered to be the practical limit for their use as inoculum in a fermentation process. The most effective storage solutions for preserving cell viability at 4°C were NaCl, glycerol and sorbitol solutions forS. thermophilus, and PO4 buffer and sorbitol solutions forL. bulgaricus. At 25°C,S. thermophilus could be stored for over 14 days in all solutions except glycerol, andL. bulgaricus for 4 days in 10% sorbitol.  相似文献   

12.
The ability of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus administered in yogurt to survive the passage through the upper gastrointestinal tract was investigated with Göttingen minipigs that were fitted with ileum T-cannulas. After ingestion of yogurt containing viable microorganisms, ileostomy samples were collected nearly every hour beginning 3 h after food uptake. Living L. delbrueckii subsp. bulgaricus and S. thermophilus were detected in the magnitude of 106 to 107 per gram of intestinal contents (wet weight) in all animals under investigation. A calculation of the minimum amount of surviving bacteria that had been administered is presented. Total DNA extracted from ileostomy samples was subjected to PCR, which was species specific for L. delbrueckii and S. thermophilus and subspecies specific for L. delbrueckii subsp. bulgaricus. All three bacterial groups could be detected by PCR after yogurt uptake but not after uptake of a semisynthetic diet. One pig apparently had developed an endogenous L. delbrueckii flora. When heat-treated yogurt was administered, L. delbrueckii was detected in all animals. S. thermophilus or L. delbrueckii subsp. bulgaricus was not detected, indicating that heat-inactivated cells and their DNAs had already been digested and their own L. delbrueckii flora had been stimulated for growth.  相似文献   

13.
The physiology of Lactobacillus delbrueckii ssp. bulgaricus and Lactobacillus casei, extensively used in the dairy industry, was studied in order to evaluate key parameters in the synthesis of exopolysaccharides and to improve their production through novel fermentation processes. Selected strains were studied in shake flasks and in fermentor experiments using glucose and lactose as main carbon sources and bacto casitone as the only complex component, in a temperature range between 35 and 42°C. The production of exopolysaccharides was monitored and correlated to the growth conditions using both a colorimetric assay and chromatographic methods. Fermentor experiments in batch mode yielded 100 mg l−1 of EPS from L. bulgaricus and 350 mg l−1 from L. casei. Moreover, the use of a microfiltration (MF) bioreactor resulted in exopolysaccharides (EPS) concentrations threefold and sixfold those of batch experiments, respectively. The monosaccharidic composition of the two analyzed polymers differed from those previously reported. The optimization of the production of EPSs using the MF fermentation strategy could permit the use of these molecules produced by generally recognised as safe (GRAS) microorganisms in the place of other polysaccharides in the food industry.  相似文献   

14.
Production of the anti-listerial bacteriocin, pediocin, by lactic acid bacteria (LAB) transformed with the cloning vector pPC418 (Ped+, 9.1 kb) was influenced by composition of media and incubation temperature. Maximum pediocin production, tested against Listeria innocua, by electrotransformants of Lactococcus lactis ssp. lactis was measured in tryptone/lactose/yeast extract medium after 24 h growth at 30 °C, while incubation at 40 °C was optimum for Ped+ transformants of Streptococcus thermophilus and Enterococcus faecalis. The amount of pediocin produced by S. thermophilus in skim milk and cheese whey supplemented with 0.5% yeast extract was estimated as 51000 units ml–1 and 25000 units ml–1, respectively. Pediocin production remained essentially unchanged in reconstituted skim milk or whey media diluted up to 10-fold. The results demonstrate the capacity of recombinant strains of LAB to produce pediocin in a variety of growth media including skim milk and inexpensive cheese whey-based media, requiring minimum nutritional supplementation.  相似文献   

15.
Aims: We have developed a direct viable count (DVC)‐FISH procedure for quickly and easily discriminating between viable and nonviable cells of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus strains, the traditional yogurt bacteria. Methods and Results: direct viable count method has been modified and adapted for Lact. delbrueckii subsp. bulgaricus and Strep. thermophilus analysis by testing different times of incubation and concentrations of DNA‐gyrase inhibitors. DVC procedure has been combined with fluorescent in situ hybridization (FISH) for the specific detection of viable cells of both bacteria with specific rRNA oligonucleotide probes (DVC‐FISH). Of the four antibiotics tested (novobiocin, nalidixic acid, pipemidic acid and ciprofloxacin), novobiocin was the most effective for DVC method and the optimum incubation time was 7 h for both bacteria. The number of viable cells was obtained by the enumeration of specific hybridized cells that were elongated at least twice their original length for Lactobacillus and twice their original size for Streptococcus. Conclusions: This technique was successfully applied to detect viable cells in inoculated faeces. Significance and Impact of the Study: Results showed that this DVC‐FISH procedure is a quick and culture‐independent useful method to specifically detect viable Lact. delbrueckii subsp. bulgaricus and Strep. thermophilus in different samples, being applied for the first time to lactic acid bacteria.  相似文献   

16.
Pure and mixed controlled-pH batch cultures of Streptococcus salivarius subsp. thermophilus 404 and Lactobacillus delbrueckii subsp. bulgaricus 398 have been conducted. The characteristics of growth and acidification and the productivity of the cultures were compared. During the mixed cultures, the growth characteristics revealed a pronounced stimulation of S. thermophilus whereas L. bulgaricus metabolism was not significantly improved. The final total population was 1.4 to 4.9 higher than in pure cultures. The acidification characteristics were not enhanced by the mixed culture conditions. The productivity of mixed cultures was 1.7 to 2.4 times higher as compared to an equivalent mixing of pure cultures.Correspondence to: C. Béal  相似文献   

17.
Streptococcus thermophilusand Lactobacillus bulgaricus were co-immobilized in different systems with varying calcium (0.1–1.5M) and alginate (1–2<><>, w/v) concentrations. Highest lactic acid production was 35 g l1 when both bacteria were in high viscosity beads (1<><>, w/v alginate) hardened in 0.1 M CaCl2 .The gel bead composition affected size and distribution of entrapped lactic acid bacteria.  相似文献   

18.
王超  崔艳华  曲晓军 《微生物学报》2020,60(11):2521-2537
[目的] 在乳酸乳球菌NZ9000中异源表达德氏乳杆菌保加利亚亚种中由双组分系统TCS1(JN675228/JN675229)调控的与酸适应相关基因,进而探究德氏乳杆菌保加利亚亚种应对酸胁迫的机制。[方法] 通过逆转录聚合酶链式反应和十二烷基硫酸钠-聚丙烯酰胺凝胶电泳验证由德氏乳杆菌保加利亚亚种TCS1调控的与酸适应相关基因中腺嘌呤磷酸核糖转移酶(aprt)、D-丙氨酸-D-丙氨酸连接酶(ddl)、寡肽ABC转运蛋白(oppDII)和延伸因子Ts(tsf)在乳酸乳球菌NZ9000中的表达情况。酸处理实验验证基因表达对宿主菌酸胁迫耐受能力的影响。并采用酵母双杂交验证双组分系统TCS1与表达的酸适应相关基因之间的互作关系及具体的互作部位。[结果] 结果表明,乳酸乳球菌NZ9000中成功表达了aprtddloppDIItsfaprtddl基因使重组菌对酸胁迫的抗性分别提高了75倍和114倍。oppDIItsf基因的表达对重组菌株的耐酸能力没有明显影响。酵母双杂交实验表明TCS1中的组氨酸蛋白激酶HPK1与Ddl之间存在相互作用,且HPK1-C结构域是二者相互作用的关键区域。[结论] aprtddl过表达菌株酸刺激的适应能力显著高于对照菌株,该研究结果可为德氏乳杆菌保加利亚亚种及类似菌株耐酸性特性的获得策略提供参考。  相似文献   

19.
A model predicting the acidifying activity of mixed cultures of lactic acid bacteria and based on the lack of interaction between the strains has been investigated to identify interacting cultures. Three mixed cultures with Streptococcus thermophilus TH3 and ST7 and Lactobacillus delbrueckii ssp. bulgaricus LB10 were grown on milk. The acidifying activities of the two mixed cultures TH3/LB10 and TH3/ST7 were predicted accurately by the model, with mean prediction errors of 7.7% and 14.1%, respectively. However, the model underestimated the acidifying activity of the mixed culture ST7/LB10, with a mean prediction error of 43.5%, which provides evidence of positive interaction between the strains ST7 and LB10 during acidification. Received: 26 April 1999 / Received revision: 16 June 2000 / Accepted: 18 June 2000  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号