共查询到20条相似文献,搜索用时 12 毫秒
1.
2.
3.
Takasaki Takeshi Hatakeyama Katsunori Watanabe Masao Toriyama Kinya Isogai Akira Hinata Kokichi 《Plant molecular biology》1999,40(4):659-668
Self-incompatibility (SI) in Brassicaceae is genetically controlled by the S locus complex in which S locus glycoprotein (SLG) and S receptor kinase (SRK) genes have been identified, and these two genes encoding stigma proteins are believed to play important roles in SI recognition reaction. Here we introduced the SLG43 gene of Brassica rapa into a self-incompatible cultivar, Osome, of B. rapa, and examined the effect of this transgene on the SI behavior of the transgenic plants. Preliminary pollination experiments demonstrated that Osome carried S52 and S60, and both were codominant in stigma, but S52 was dominant to S60 in pollen. S43 was found to be recessive to S52 and codominant with S60 in stigma. The nucleotide sequence of SLG43 was more similar to that of SLG52 (87.8% identity) than to that of SLG60 (74.8% identity). Three of the ten primary transformants (designated No. 1 to No. 10) were either completely (No. 9) or partially (No. 6 and No. 7) self-compatible; the SI phenotype of the stigma was changed from S52S60 to S60, but the SI phenotype of the pollen was not altered. In these three plants, the mRNA and protein levels of both SLG43 and SLG52 were reduced, whereas those of SLG60 were not. All the plants in the selfed progeny of No. 9 and No. 6 regained SI and they produced a normal level of SLG52. These results suggest that the alteration of the SI phenotype of the stigma in the transformants Nos. 6, 7, and 9 was the result of specific co-suppression between the SLG43 transgene and the endogenous SLG52 gene. Three of the transformants (Nos. 5, 8 and 10) produced SLG43 protein, but their SI phenotype was not altered. The S60 homozygotes in the selfed progeny of No. 10 which produced the highest level of SLG43 were studied because S43 was codominant with S60 in the stigma. They produced SLG43 at approximately the same level as did S43S60 heterozygotes, but did not show S43 haplotype specificity at the stigma side. We conclude that SLG is necessary for the expression of the S haplotype specificity in the stigma but the introduction of SLG alone is not sufficient for conferring a novel S haplotype specificity to the stigma. 相似文献
4.
The nucleotide sequence of an 86.4-kb region that includes the SP11, SRK, and SLG genes of Brassica rapa S-60 (a class-II S haplotype) was determined. In the sequenced region, 13 putative genes were found besides SP11-60, SRK-60, and SLG-60. Five of these sequences were isolated as cDNAs, five were homologues of known genes, cDNAs, or ORFs, and three are hypothetical ORFs. Based on their nucleotide sequences, however, some of them are thought to be non-functional. Two regions of colinearity between the class-II S-60 and Brassica class-I S haplotypes were identified, i.e., S flanking region 1 which shows partial colinearity of non-genic sequences and S flanking region 2 which shows a high level of colinearity. The observed colinearity made it possible to compare the order of SP-11, SRK, and SLG genes in the S locus between the five sequenced S haplotypes. It emerged that the order of SRK and SLG in class-II S-60 is the reverse of that in the four class-I S haplotypes reported so far, and the order of SP11, SRK and SLG is the opposite of that in the class-I haplotype S-910. The possible gene designated as SAN1 (S locus Anther-expressed Non-coding RNA like-1), which is located in the region between SP11-60 and SRK-60, has features reminiscent of genes for non-coding RNAs (ncRNAs), but no homologous sequences were found in the databases. This sequence is transcribed in anthers but not in stigmas or leaves. These features of the genomic structure of S-60 are discussed with special reference to the characteristics of class-II S haplotypes. 相似文献
5.
K. Song M. K. Slocum T. C. Osborn 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1995,90(1):1-10
Construction of a detailed RFLP linkage map of B. rapa (syn. campestris) made it possible, for the first time, to study individual genes controlling quantitative traits in this species. Ninety-five F2 individuals from a cross of Chinese cabbage cv Michihili by Spring broccoli were analyzed for segregation at 220 RFLP loci and for variation in leaf, stem, and flowering characteristics. The number, location, and magnitude of genes underlying 28 traits were determined by using an interval mapping method. Zero to five putative quantitative trait loci (QTL) were detected for each of the traits examined. There were unequal gene effects on the expression of many traits, and the inheritance patterns of traits ranged from those controlled by a single major gene plus minor genes to those controlled by polygenes with small and similar effects. The effect of marker locus density on detection of QTL was analyzed, and the results showed that the number of QTL detected did not change when the number of marker loci used for QTL mapping was decreased from 220 to 126; however, a further reduction from 126 to 56 caused more than 15% loss of the total QTL detected. The detection of putative minor QTL by removing the masking effects of major QTL was explored. 相似文献
6.
7.
Coevolution of the S-locus genes SRK,SLG and SP11/SCR in Brassica oleracea and B. rapa 总被引:1,自引:0,他引:1
Sato K Nishio T Kimura R Kusaba M Suzuki T Hatakeyama K Ockendon DJ Satta Y 《Genetics》2002,162(2):931-940
Brassica self-incompatibility (SI) is controlled by SLG and SRK expressed in the stigma and by SP11/SCR expressed in the anther. We determined the sequences of the S domains of 36 SRK alleles, 13 SLG alleles, and 14 SP11 alleles from Brassica oleracea and B. rapa. We found three S haplotypes lacking SLG genes in B. rapa, confirming that SLG is not essential for the SI recognition system. Together with reported sequences, the nucleotide diversities per synonymous and nonsynonymous site (pi(S) and pi(N)) at the SRK, SLG, and SP11 loci within B. oleracea were computed. The ratios of pi(N):pi(S) for SP11 and the hypervariable region of SRK were significantly >1, suggesting operation of diversifying selection to maintain the diversity of these regions. In the phylogenetic trees of 12 SP11 sequences and their linked SRK alleles, the tree topology was not significantly different between SP11 and SRK, suggesting a tight linkage of male and female SI determinants during the evolutionary course of these haplotypes. Genetic exchanges between SLG and SRK seem to be frequent; three such recent exchanges were detected. The evolution of S haplotypes and the effect of gene conversion on self-incompatibility are discussed. 相似文献
8.
9.
Valérie Delorme Jean-Loïc Giranton Yves Hatzfeld Aline Friry Philippe Heizmann María José Ariza Christian Dumas Thierry Gaude J. Mark Cock 《The Plant journal : for cell and molecular biology》1995,7(3):429-440
The S locus, which controls the self-incompatibility response in Brassica, has been shown to contain at least two genes. SLG encodes a secreted S locus glycoprotein whilst SRK encodes a putative S locus receptor kinase. SRK has been shown potentially to encode a functional kinase and genetic evidence indicates that this gene is essential for the self-incompatibility response. Here the characterization of the SRK and SLG genes of a Brassica line homozygous for the S3 haplotype is described. A 120 kDa glycoprotein was identified in stigmas and several lines of evidence indicated that this protein is encoded by the SRK3 gene. First, the 120 kDa glycoprotein was recognized by antibodies raised against peptides based on the SRK3 gene sequence. Secondly, this protein is polymorphic and, in an F2 population segregating for the S3 haplotype, was expressed only in plants possessing the S3 haplotype. Thirdly, the 120 kDa protein was expressed specifically in stigmas. Finally, the 120 kDa protein was only extracted from stigmas in the presence of detergent indicating that it is anchored in the membrane. SRK has been predicted to encode a transmembrane glycoprotein based on the deduced amino acid sequence. Located on the membrane, SRK is in a position to interface between an extracellular recognition event between pollen and pistil and an intracellular signal transduction pathway which initiates the self-incompatibility response. 相似文献
10.
Highly divergent sequences of the pollen self-incompatibility (S) gene in class-I S haplotypes of Brassica campestris (syn. rapa) L 总被引:1,自引:0,他引:1
Watanabe M Ito A Takada Y Ninomiya C Kakizaki T Takahata Y Hatakeyama K Hinata K Suzuki G Takasaki T Satta Y Shiba H Takayama S Isogai A 《FEBS letters》2000,473(2):139-144
Self-incompatibility (SI) enables flowering plants to discriminate between self- and non-self-pollen. In Brassica, SI is controlled by the highly polymorphic S locus. The recently identified male determinant, termed SP11 or SCR, is thought to be the ligand of S receptor kinase, the female determinant. To examine functional and evolutionary properties of SP11, we cloned 14 alleles from class-I S haplotypes of Brassica campestris and carried out sequence analyses. The sequences of mature SP11 proteins are highly divergent, except for the presence of conserved cysteines. The phylogenetic trees suggest possible co-evolution of the genes encoding the male and female determinants. 相似文献
11.
12.
Yoshinobu Takada Takayuki Nakanowatari Jun Sato Katsunori Hatakeyama Tomohiro Kakizaki Akiko Ito Go Suzuki Hiroshi Shiba Seiji Takayama Akira Isogai Masao Watanabe 《Sexual plant reproduction》2005,17(5):211-217
Plants have evolved many systems to prevent inappropriate fertilization. Among them, incompatibility is a well-organized system in which pollen germination or pollen-tube growth is inhibited in pistils. Self-incompatibility (SI), rejecting self-pollen, promotes outbreeding in flowering plants. On the other hand, inter-species incompatibility, preventing gene flow among species to restrict outbreeding, usually occurs unilaterally, and is known as unilateral incompatibility (UI). In Brassicaceae, little is known about the molecular mechanism of UI, although S-locus genes involved in recognition of self-pollen have been characterized in the SI system. In the present study, we characterized novel UI observed between members of the same species, Brassica rapa; pollen of Turkish SI lines was specifically rejected by pistils of the Japanese commercial SI variety Osome. The incompatible phenotype of this intra-species UI closely resembled that of SI. Segregation analysis revealed that the pollen factor of this UI was not linked to the S-locus.The revised version was published online in December 2004 with corrections to figure 1. 相似文献
13.
Lim SH Cho J Lee J Cho YH Kim BD 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2002,104(8):1253-1262
Polymorphism of the S-locus glycoprotein (SLG) and S-locus receptor kinase (SRK) genes in Raphanus sativus was analyzed by PCR-RFLP using SLG- and SRK-specific primers. Twenty four inbred lines of R. sativus could be grouped into nine S haplotypes. DNA fragments of SLG alleles specifically amplified from five S haplotypes by PCR with Class-I SLG-specific primers showed different profiles upon polyacrylamide-gel electrophoresis after digestion with restriction endonucleases. The five R. sativus SLG alleles were determined for their nucleotide sequences of DNA fragments. Comparison of the amino-acid sequences with a reported Brassica SLG (S6) showed 77-84% homology. Deduced amino-acid sequences showed 12-conserved cystein residues and three hypervariable regions which are characteristic of Brassicsa SLG. A DNA fragment was also amplified by PCR from two of each S haplotype with Class-II SLG-specific primers, and showed polymorphism when cleaved with restriction endonucleases. The nucleotide sequences of amplified DNA fragments of the Class-II SLG revealed about 60% similarity with those of the Class-I SLG. It is concluded that there exist both Class I and Class II S alleles in R. sativus, as in Brassica campestris and Brassica oleracea. PCR using SRK-specific primers amplified a DNA fragment of about 1.0 kb from seven of each S haplotype out of 24 tested. These DNA fragments showed high polymorphism in polyacrylamide-gel electrophoresis after digestion with restriction endonucleases. Nucleotide sequences of the DNA fragments amplified from the seven S haplotypes showed that the fourth and the fifth exons of SRK are highly conserved, and that there is high variation in the fifth intron, the sixth intron and seventh exon of the SRK which may be responsible for the polymorphic band patterns in PCR-RFLP analysis. The PCR-RFLP method has proven useful for the identification of S alleles in inbred lines and for listing S haplotypes in R. sativus. Phylogenic analysis of the SLG and SRK sequences from Raphanus and Brassica revealed that the Raphanus SLGs and SRKs did not form an independent cluster, but were dispersed in the tree, clustering together with Brassica SLGs and SRKs. Furthermore, SLGs and SRKs from Raphanus were both grouped into Class-I or Class-II S haplotypes. Therefore, these results suggest that the diversification of the SLG and SRK alleles occurred prior to the differentiation of the two genera Brassica and Raphanus. 相似文献
14.
Genes for resistance to white rust (Albugo candida) in oilseed Brassica rapa were mapped using a recombinant inbred (RI) population and a genetic linkage map consisting of 144 restriction fragment length polymorphism (RFLP) markers and 3 phenotypic markers. Young seedlings were evaluated by inoculating cotyledons with A. candida race 2 (AC2) and race 7 (AC7) and scoring the interaction phenotype (IP) on a 0-9 scale. The IP of each line was nearly identical for the two races and the population showed bimodal distributions, suggesting that a single major gene (or tightly linked genes) controlled resistance to the two races. The IP scores were converted to categorical resistant and susceptible scores, and these data were used to map a single Mendelian gene controlling resistance to both races on linkage group 4 where resistance to race 2 had been mapped previously. A quantitative trait loci (QTL) mapping approach using the IP scores detected the same major resistance locus for both races, plus a second minor QTL effect for AC2 on linkage group 2. These results indicate that either a dominant allele at a single locus (Acal) or two tightly linked loci control seedling resistance to both races of white rust in the biennial turnip rape cultivar Per. The map positions of white rust resistance genes in B. rapa and Brassica napus were compared and the results indicate where additional loci that have not been mapped may be located. Alignment of these maps to the physical map of the Arabidopsis genome identified regions to target for comparative fine mapping using this model organism. 相似文献
15.
16.
Jingjing Jiang Lina Yao Ying Miao Jiashu Cao 《Molecular genetics and genomics : MGG》2013,288(11):601-614
Pectate lyases (PL) depolymerize demethylated pectin (pectate, EC 4.2.2.2) by catalyzing the eliminative cleavage of α-1,4-glycosidic linked galacturonan. Pectate Lyase-like (PLL) genes are one of the largest and most complex families in plants. However, studies on the phylogeny, gene structure, and expression of PLL genes are limited. To understand the potential functions of PLL genes in plants, we characterized their intron–exon structure, phylogenetic relationships, and protein structures, and measured their expression patterns in various tissues, specifically the reproductive tissues in Brassica rapa. Sequence alignments revealed two characteristic motifs in PLL genes. The chromosome location analysis indicated that 18 of the 46 PLL genes were located in the least fractionated sub-genome (LF) of B. rapa, while 16 were located in the medium fractionated sub-genome (MF1) and 12 in the more fractionated sub-genome (MF2). Quantitative RT-PCR analysis showed that BrPLL genes were expressed in various tissues, with most of them being expressed in flowers. Detailed qRT-PCR analysis identified 11 pollen specific PLL genes and several other genes with unique spatial expression patterns. In addition, some duplicated genes showed similar expression patterns. The phylogenetic analysis identified three PLL gene subfamilies in plants, among which subfamily II might have evolved from gene neofunctionalization or subfunctionalization. Therefore, this study opens the possibility for exploring the roles of PLL genes during plant development. 相似文献
17.
18.
Wheeler MJ Armstrong SA Franklin-Tong VE Franklin FC 《Journal of experimental botany》2003,54(380):131-139
The self-incompatibility (SI) response in Papaver rhoeas depends upon the cognate interaction between a pollen-expressed receptor and a stigmatically expressed ligand. The genes encoding these components are situated within the S-locus. In order for SI to be maintained, the genes encoded by the S-locus must be co-inherited with no recombination between them. Several hypotheses, including sequence heterogeneity and chromosomal position, have been put forward to explain the maintenance of the S-locus in the SI systems of the Brassicaceae and the Solanaceae. A region of the Papaver rhoeas genome encompassing part of the self-incompatibility S(1) locus has been cloned and sequenced. The clone contains the gene encoding the stigmatic component of the response, but does not contain a putative pollen S-gene. The sequence surrounding the S(1) gene contains several diverse repetitive DNA elements. As such, the P. rhoeas S-locus bears similarities to the S-loci of other SI systems. An attempt to localize the P. rhoeas S-locus using fluorescence in situ hybridization (FISH) has also been made. The potential relevance of the findings to mechanisms of recombination suppression is discussed. 相似文献
19.
Joon Ki Hong Jung Sun Kim Jin A. Kim Soo In Lee Myung-Ho Lim Beom-Seok Park Yeon-Hee Lee 《Genes & genomics.》2010,32(4):309-317
SHI (short internodes) is a negative regulator of gibberellin-induced cell elongation. Extensive searches in the Brassica rapa genome allowed for the prediction of at least six different SHI-related genes on six chromosomes in the genome. Genome structural examination revealed that these genes had one intron each in their corresponding open reading frames. Protein structure comparisons using the CLUSTALW program and based on alignments of all BrSRS (B. r apa SHI-related sequence) proteins revealed broad conservation of the RING finger-like zinc finger and IGGH motifs. According to the phylogenetic relationship based on deduced amino acid sequences, the six BrSRS proteins were most closely related to Arabidopsis SRS (AtSRS) proteins; however, BrSRS proteins were dispersed in the phylogenetic tree. Semi-quantitative RT-PCR analysis indicated that the six BrSRS genes exhibited different expression patterns in various tissues and responded differently to growth phytohormones. The differences among the six BrSRS genes with respect to gene structure and expression pattern suggest that these genes may play diverse physiological roles in the developmental process of B. rapa. 相似文献
20.
Snowdon RJ Friedrich T Friedt W Köhler W 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2002,104(4):533-538
Oilseed rape (Brassica napus L.) is an amphidiploid species that originated from a spontaneous hybridisation of Brassica rapa L. (syn. campestris) and Brassica oleracea L., and contains the complete diploid chromosome sets of both parental genomes. The metaphase chromosomes of the highly homoeologous
A genome of B. rapa and the C genome of B. oleracea cannot be reliably distinguished in B. napus because of their morphological similarity. Fluorescence in situ hybridisation (FISH) with 5S and 25S ribosomal DNA probes
to prometaphase chromosomes, in combination with DAPI staining, allows more dependable identification of Brassica chromosomes. By comparing rDNA hybridisation and DAPI staining patterns from B. rapa and B. oleracea prometaphase chromosomes with those from B. napus, we were able to identify the putative homologues of B. napus chromosomes in the diploid chromosome sets of B. rapa and B. oleracea, respectively. In some cases, differences were observed between the rDNA hybridisation patterns of chromosomes in the diploid
species and their putative homologue in B. napus, indicating locus losses or alterations in rDNA copy number. The ability to reliably identify A and C genome chromosomes
in B. napus is discussed with respect to evolutionary and breeding aspects.
Received: 13 July 2001 / Accepted: 23 August 2001 相似文献