首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tidal groundwater in a mangrove swamp can return to the mangrove creek by one of two mechanisms: (a) it can either flow through the swamp soil due to the water table difference between the creek and the groundwater in the swamp; or (b) it can flow via tidal flushing of animal burrows. This paper compares the magnitude of these two mechanisms for different regions of a mangrove swamp. Direct groundwater flow rates resulting from water stored in the sediment as a consequence of infiltration, especially during and after tidal inundation, were calculated for every square meter in the surface of a mangrove forest from piezometer data. Flow rates of water due to burrow flushing were determined based on published surveys, by estimating the burrow volume and the percentage of the burrow water that is flushed at each tidal inundation. Although direct groundwater flux was found to decrease further away from the creek compared to close to the creek, it was also found to have a similar range as burrow flushing flow. Specifically, direct groundwater flow ranged from 0.004 to 0.04 m3/m2/day, whilst burrow flushing flux ranged from 0.01 to 0.04 m3/m2/day.Considering the errors involved in the experiments and calculations, these ranges can be considered as being the same and neither of the two processes can be considered as negligible compared to the other. As a consequence, surveys of groundwater processes in mangrove areas, and more generally in swamp and tidal areas where animal burrows are present, will need to consider both mechanisms. Investigations of the influence over flushing mechanisms of different residence times of the water in burrows and in the sediment body would also be recommended in order to establish salt and nutrient budget in mangrove swamps.  相似文献   

2.
D. M. Alongi 《Oecologia》1994,98(3-4):320-327
Benthic oxygen consumption and primary production were measured using the bell jar technique in deltaic and fringing mangrove forests of tropical northeastern Australia. In a deltaic forest, rates of sediment respiration ranged from 197 to 1645 mol O2 m–2 h–1 (mean=836), but did not vary significantly with season or intertidal zone. Gross primary production varied among intertidal zones and seasons, ranging from –281 to 1413 mol O2 m–2 h–1 (mean=258). Upon tidal exposure, rates of gross primary production increased, but respiration rates did not change significantly. In a fringing mangrove forest, benthic respiration and gross primary production exhibited strong seasonality. In both forests, rates of oxygen consumption and production were low compared to salt marshes, but equivalent to rates in other mangrove forests. The production:respiration (P/R) ratio varied greatly over space and time (range:–0.61 to 1.76), but most values were «1 with a mean of 0.15, indicating net heterotrophy. On a bare creek bank and a sandflat, rates of gross primary production and P/R ratios were generally higher than in the adjacent mangroves. Low microalgal standing stocks, low light intensity under the canopy, and differences in gross primary production between mangroves and tidal flats, and with tidal status, indicate that benthic microalgae are light-limited and a minor contributor to primary productivity in these tropical mangrove forests.  相似文献   

3.
We model the dynamics of a tidal creek — mangrove swamp system. In the creek, a tidal asymmetry prevails. The ebb flow dominance at spring tides helps flush out the coarse sediment from the creek. Results from the numerical model suggest that the ebb dominance is due to friction in the mangrove forest and in turn this is controlled by the density of the vegetation. The tidal asymmetry of the current is negligible for a very small or a very large vegetation density, and is maximum for an intermediate vegetation density typical of that in undisturbed healthy mangroves.  相似文献   

4.
The behavior of tidal flow in the riverine-forest type is investigated in the Aira-River mangrove area in Iriomote Island, Japan. In the mangrove swamp near the bank of the creek, a velocity component parallel to a tidal creek reduces greatly in the direction perpendicular to the creek. Based on this finding, it is theoretically suggested that the eddy viscosity in the mangrove swamp, which is caused by the interaction between mangrove vegetation and the shear stress resulting from the tidal flow in the creek, plays an important role in the hydrodynamics of the mangrove swamp.  相似文献   

5.
Flow of groundwater from mangrove swamp sediment to mangrove creeks is likely to be an important pathway in mangrove swamps, particularly for the removal of salt excluded at the mangrove root. The swamps are generally saturated with water, and are perforated with animal burrows, allowing significant groundwater flow to mangrove creeks to occur. The hydraulic conductivity of the sediment is thus an important physical parameter but is very difficult to measure in-situ. In this work, we describe a simple method for determining the hydraulic conductivity of mangrove sediment, including the effect of macropores such as crab burrows, which uses the existing animal burrows as piezometers. Experiments to measure the hydraulic conductivity of the sediment were carried out in a variety of mangrove forests. It was found that hydraulic conductivity varied from around 1 to 10 m per day, which is at least 10 times greater than would be expected if there were no burrows. In order to check the validity of the method, conventional piezometers were used to determine the free water table level in an area of mangroves fringing a creek. From these measurements, hydraulic conductivity was determined independently and found to be consistent with the new methodology.  相似文献   

6.
Although water in mangrove sediments influences nutrient cycling in both, mangrove forest and estuary, little information exists on seasonal and vertical distribution of dissolved organic and inorganic compounds in the sediment column. We studied the influence of sediment texture and chemistry, permeability (K), tides, and rainfall on dissolved organic carbon (DOC) and nitrogen (DON), dissolved inorganic phosphate (DIP) and salinity in creek and sediment waters of a mangrove in Pará, Brazil. Water samples were taken from boreholes and piezometers in the mangrove forest and from an adjacent tidal creek at neap and spring tides, during the dry and rainy season. Forest sediment was analysed for carbon (C), nitrogen (N), salinity and permeability. Clay, C and N decreased with depth. Sediment permeability (K) was lowest (<0.1 m day−1) in the upper, clay-rich and crab-burrow-free mud layer. In the deeper, fine sand strata, K ranged from 0.7 to 1.8 m day−1. Tidal range in the creek was 3.5 and 5.5 m for neap and spring tides, respectively. Salinity, DOC, DON and DIP in creek water were inversely related to tidal height. Piezometer data revealed significant water level changes in deeper, sandy sediment layer, which followed, time-lagged, the tidal fluctuations. In contrast, tide did not affect the water level in the upper sediment due to low permeability. Compared with creek water, sediment water was enriched in DOC, DON and DIP because of organic matter input and mineralization. In deeper layers, solute concentration was most likely affected by sorption processes (DOC and DIP) and reduction reactions (DIP). During the rainy season, DOC and DON in creek and sediment water were higher than in the dry season. DIP appeared invariant to seasonal changes. In the rainy season, salt flushing from surface sediments resulted in higher salinities at intermediate sediment depths, while in the deeper layers salinity was lower due to exchange with water from the tidal creek.  相似文献   

7.
Along ria shorelines mangrove assemblages are closely related to habitat types and there is a recurring pattern in their distribution that is linked to the origin and history of the geomorphic units. The coastal geomorphology is related to ancestral landforms developed prior to the post-glacial transgression, as well as to tidal levels, aspect, modern shore-forming processes, and types of hinterland/tidal flat contacts. These historical and process patterns develop distinct geomorphic units which dictate the distribution of habitats and their mangrove assemblages. Mangrove assemblages are classified according to their habitat: main tidal flat, hinterland fringe, alluvial fan, spit/chenier, tidal creek bank, tidal creek shoal and rocky shore. Within a given habitat there are various physico-chemical gradients which are instrumental in developing zonation within the assemblages. The variety of internal zones within an assemblage is related to the richness of species within the regional species pool which in turn is related to climate.  相似文献   

8.
A digital elevation model describing topography, tide elevation and inundation degree and frequency of a mangrove forest in North Brazil is discussed in relation to existing phosphate and physicochemical data in waters of an adjacent tidal creek. Due to smooth topography, an increase of 20 cm in tidal height above average neap tides increases flooded area from about 50 to 80%. Analysis of the relationship between microtopography, tidal height and flooding rate showed that in the upper 60 cm of the mangrove forest, increases of 20 cm in topographical height resulted in a doubling of the inundation frequency. This can be particularly relevant for the analysis of nutrient mobilization and vegetation structure of infrequently inundated wetlands. Throughout the year, low-tide phosphate in creek water was inversely proportional to the maximum area flooded during high tide, this correlation being higher during the dry season. Similarly, the inverse relationship between flooded areas and low-tide/high-tide pH ratios was highly significant during the dry season and the beginning of the rainy season. Although the high correlations obtained are based on data pairs obtained at high and low tide, it has to clarified whether the association between inundation degree and creek water pH is relevant for the stability of P compounds in sediment on the short scale of a tidal cycle.  相似文献   

9.
Short-term (daily) and seasonal variations in concentration and flux of dissolved organic carbon (DOC) were examined over 15 tidal cycles in a riverine mangrove wetland along Shark River, Florida in 2003. Due to the influence of seasonal rainfall and wind patterns on Shark River’s hydrology, samplings were made to include wet, dry and transitional (Norte) seasons. We used a flume extending from a tidal creek to a basin forest to measure vertical (vegetated soil/water column) and horizontal (mangrove forest/tidal creek) flux of DOC. We found significant (p < 0.05) variations in surface water temperature, salinity, conductivity, pH and mean concentration of DOC with season. Water temperature and salinity followed seasonal patterns of air temperature and rainfall, while mean DOC concentration was highest during the dry season (May), followed by the wet (October) and ‘Norte’ (December) seasons. This pattern of DOC concentration may be due to a combination of litter production and inundation pattern of the wetland. In contrast to daily (between tides) variation in DOC flux between the mangrove forest and tidal creek, daily variations of mean water quality were not significant. However, within-tide variation of DOC flux, dissolved oxygen content and salinity was observed. This indicated that the length of inundation and water source (freshwater vs. saltwater) variation across tidal cycles influenced water quality and DOC flux in the water column. Net DOC export was measured in October and December, suggesting the mangrove forest was a source of DOC to the adjacent tidal creek during these periods. Net annual export of DOC from the fringe mangrove to both the tidal creek and basin mangrove forest was 56 g C m−2 year−1. The seasonal pattern in our flux results indicates that DOC flux from this mangrove forest may be governed by both freshwater discharge and tidal range.  相似文献   

10.
2004年5月,对浙江乐清西门岛的人工红树林及周边滩涂进行大型底栖动物调查,共发现大型底栖动物18种,隶属6门7纲15科;主要是软体动物,节肢动物和环节动物.底上生活类群(groupofsurface,GS)种类数少于底内生活类群(group of surface below,GSB)种类数.通过在红树林、幼红树林和光滩三种生境的调查发现,幼红树林群落结构组成介于红树林和光滩之间,三种生境的大型底栖动物密度分别为452ind·m-2,310ind·m-2,620ind·m-2,生物量分别为40.53g·m-2,44.80g·m-2和42.75g·m-2.红树林区底栖动物的优势种为可口革囊星虫Phascolosoma esculenta和难解不等蛤Enigmonia aenigmatica.三种生境中,红树林的生物多样性和均匀度最高,优势度最小,造成这个现象的原因可能与红树林生境的复杂化有关.  相似文献   

11.
Expansion of the monospecific mangrove, Kandelia obovata, has converted intertidal mudflats and other habitats into mangrove forests, thus reducing estuarine biodiversity in the Danshuei River estuary, northern Taiwan. Dense mangrove vegetation was removed to create a small patchwork of mudflats and a tidal creek in February 2007. Subsequent changes in sediment properties and biodiversity of the macrobenthos and avian communities were examined. The results showed that the creation of different habitats led to changes in sediment properties and biodiversity. The water content and sorting degree of the sediments differed significantly among the restored mudflat, the tidal creek, and the mangrove control site. Silt/clay, organic carbon content, and chlorophyll a concentrations varied seasonally, but not among sites. The abundance of polychaetes in the creek was greater than that in the mudflat or the mangrove (12.5 vs. 5.3 and 2.2 individuals/m2, respectively), suggesting preferential colonization of infaunal polychaetes in habitats with prolonged submersion. Crabs showed seasonal changes in density, with higher densities in summer than in autumn and winter. The species richness of wintering shorebirds on the created mudflat increased dramatically from 2002 to 2007. The transformation of a vegetated area into an open mudflat appeared to benefit shorebirds by providing roosting habitat. Our study demonstrated that controlling the spread of estuarine mangrove forests could increase biodiversity, and could particularly benefit the migratory shorebird community.  相似文献   

12.
Studies of the structure or functioning of intertidal soft sediments often involves collection of biogeochemical data over tidal, diel and seasonal time-scales. Little effort has, however, been made to quantify accurately the time-scales at which these properties vary. Many previous studies collected samples from different sites at different times, potentially resulting in the confounding of spatial and temporal variation. This experiment was designed to determine if time of day or time within the exposure period had any significant effect on measurements of 7 different properties of sediments. Samples of sediment were collected using contact cores at the beginning, middle and end of tidal emersion at each of 9 a.m., 12 p.m. and 3 p.m., with two replicate days of each condition, from mangrove forests fringing Glades Bay, Sydney, Australia. These samples were analysed for water-content, pigments, carbohydrates, grain-size and loss on ignition (LOI), to determine the potential effects of time of day and time within the tidal cycle on these properties of the sediments.Whilst both time of day and time within the tidal cycle were found to occasionally have a significant effect upon the measured properties, most of the variation occurred among sites and between replicate days of each set of conditions. The minimal influence of time of day and time within the tidal cycle show that sampling effort should be preferentially placed into replicating days of sampling and sites because these are the scales with the greatest variation. Differences in the patterns found also depended on whether the data were expressed as content or concentration, the consequences of which are briefly described.  相似文献   

13.
海南岛东寨港红树林群落甲烷通量研究   总被引:2,自引:0,他引:2       下载免费PDF全文
 采用静态箱法对海南东寨港4个站位的5个红树林群落的土壤甲烷通量进行了研究,结果表明林地土壤平均甲烷通量为0.81mg·m-2·d-1。利用聚乙烯袋密闭法测定了6种红树植物叶片的甲烷通量,发现红树植物叶片具有吸收大气甲烷的效应。通过海莲(Bruguiera sexangula)红树林的研究还表明,林地土壤甲烷通量的日变化与林内潮水淹浸状况有关。海莲林不同滩面土壤甲烷通量的差异与土壤含水量有关。土壤甲烷通量的季节差异因植被类型或土壤性质不同而表现为两种形式。  相似文献   

14.
Ye Y  Pang B P  Chen G C  Chen Y 《农业工程》2011,31(3):169-173
In addition to carbon accumulation in plants, processes of organic carbon in mangrove ecosystems include origins of sediment organic carbon, carbon fluxes between mangroves and their adjacent systems (coastal waters and atmosphere), and cycling processes. Sediment organic carbon originates from suspending solids in coastal waters, mangrove plants and benthic algae. In mangroves with low organic carbon content in sediments, tidal seawater is the main origin of sediment organic carbon, while in mangroves with high sediment organic carbon contents, sediment organic carbon mainly originates from mangrove plants. Due to tidal flush, there is large material exchange between mangrove ecosystems and their adjacent coastal waters. In China, exports of organic carbon in litter falls and dissolved organic carbon from mangroves to their adjacent coastal waters have not been documented. Processes of mangrove litter falls, including production, decomposition, export and animal consumption, determine linkages among organic carbon among mangrove plants, secondary production and coastal ocean. Consumers especially benthic animals may influence organic carbon in mangrove ecosystems, because (1) their consumption rates are high, and their selective feeding on some food sources will change the relative quantities of export, bury and mineralization of organic carbon from different origins; (2) their consumption is much more than assimilation, resulting in the changes in sizes, forms and qualities of non-assimilated organic matters, and then the changes in availability of export, consumption or mineralization of organic carbon. Respiration and sulfate reduction are important mineralization processes of organic carbon in mangrove sediments. Mineralization rates of organic carbon in mangrove sediments are influenced by quantities, activities and particle sizes of organic matters, and other factors such as forest ages, root activities and animal burrowing activities. Researches on processes of mangrove organic carbon should be based on open systems, and ecological processes of organic carbon should be coupled with vegetation restoration.  相似文献   

15.
In addition to carbon accumulation in plants, processes of organic carbon in mangrove ecosystems include origins of sediment organic carbon, carbon fluxes between mangroves and their adjacent systems (coastal waters and atmosphere), and cycling processes. Sediment organic carbon originates from suspending solids in coastal waters, mangrove plants and benthic algae. In mangroves with low organic carbon content in sediments, tidal seawater is the main origin of sediment organic carbon, while in mangroves with high sediment organic carbon contents, sediment organic carbon mainly originates from mangrove plants. Due to tidal flush, there is large material exchange between mangrove ecosystems and their adjacent coastal waters. In China, exports of organic carbon in litter falls and dissolved organic carbon from mangroves to their adjacent coastal waters have not been documented. Processes of mangrove litter falls, including production, decomposition, export and animal consumption, determine linkages among organic carbon among mangrove plants, secondary production and coastal ocean. Consumers especially benthic animals may influence organic carbon in mangrove ecosystems, because (1) their consumption rates are high, and their selective feeding on some food sources will change the relative quantities of export, bury and mineralization of organic carbon from different origins; (2) their consumption is much more than assimilation, resulting in the changes in sizes, forms and qualities of non-assimilated organic matters, and then the changes in availability of export, consumption or mineralization of organic carbon. Respiration and sulfate reduction are important mineralization processes of organic carbon in mangrove sediments. Mineralization rates of organic carbon in mangrove sediments are influenced by quantities, activities and particle sizes of organic matters, and other factors such as forest ages, root activities and animal burrowing activities. Researches on processes of mangrove organic carbon should be based on open systems, and ecological processes of organic carbon should be coupled with vegetation restoration.  相似文献   

16.
Summary Measurements of litter fall and litter removal by crabs, in conjunction with estimates of litter decay by microbes and tidal export of litter from three high-intertidal mangrove forests were made during a year-long study in tropical northeastern Australia. In forests dominated by Ceriops tagal and Bruguiera exaristata, litter standing stocks remained low on the forest floor (mean 6 g·m-2), although litter fall was high; 822 and 1022 g·m-2·y-1, respectively. Sesarmid crabs removed 580 (Ceriops) and 803 (Bruguiera) g·m-2·y-1, or 71 and 79%, of the total annual litter fall from the forest floor. Relative to the rate of litter removal by crabs, microbial turnover of whole, unshredded litter was insignificant, accounting for <1% of annual litter fall. Export of litter by tides was estimated to remove 194 (Ceriops) and 252 (Bruguiera) g·m-2·y-1 or 24 and 25% of annual litter fall. In a forest dominated by Avicenniamarina, in which an ocypodid crab was more abundant than sesarmids, litter standing stocks were higher (mean 84 g·m-2) and crabs removed less litter; 173 g·m-2·y-1 or 33% of the annual litter fall of 519 g·m-2·y-1. Microbial turnover of intact litter was more important in the Avicennia forest (168 g·m-2·y-1 or 32% of annual litter fall), and tides exported 107 g·m-2·y-1 or 21% of litter production. In areas where sesarmid crabs were absent or rare in Ceriops forests, there were significantly higher standing stocks of litter and slower rates of leaf removal. Taking into account the probable assimilation efficiencies of sesarmid crabs feeding on mangrove leaves, we estimate that in Ceriops and Bruguiera forests leaf processing by crabs turns litter over at >75 times the rate of microbial decay alone, thus facilitating the high sediment bacterial productivity in these forests. The importance of litter processing by crabs increases with height in the intertidal in tropical Australia, in contrast to New World mangrove forests, where the reverse is true.Contribution No. 445 from the Australian Institute of Marine Science  相似文献   

17.
Community structure of sediment bacteria in the Everglades freshwater marsh, fringing mangrove forest, and Florida Bay seagrass meadows were described based on polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) patterns of 16S rRNA gene fragments and by sequencing analysis of DGGE bands. The DGGE patterns were correlated with the environmental variables by means of canonical correspondence analysis. There was no significant trend in the Shannon–Weiner index among the sediment samples along the salinity gradient. However, cluster analysis based on DGGE patterns revealed that the bacterial community structure differed according to sites. Not only were these salinity/vegetation regions distinct but the sediment bacteria communities were consistently different along the gradient from freshwater marsh, mangrove forest, eastern-central Florida Bay, and western Florida Bay. Actinobacteria- and Bacteroidetes/Chlorobi-like DNA sequences were amplified throughout all sampling sites. More Chloroflexi and members of candidate division WS3 were found in freshwater marsh and mangrove forest sites than in seagrass sites. The appearance of candidate division OP8-like DNA sequences in mangrove sites distinguished these communities from those of freshwater marsh. The seagrass sites were characterized by reduced presence of bands belonging to Chloroflexi with increased presence of those bands related to Cyanobacteria, γ-Proteobacteria, Spirochetes, and Planctomycetes. This included the sulfate-reducing bacteria, which are prevalent in marine environments. Clearly, bacterial communities in the sediment were different along the gradient, which can be explained mainly by the differences in salinity and total phosphorus.  相似文献   

18.
A 450 cm sediment core from Taperebal, in the mangrove region of northeastern Pará State in northern Brazil has been studied through pollen analysis in order to reconstruct mangrove development and dynamics and to infer relative sea-level (RSL) changes during the Holocene. Six AMS radiocarbon dates, which provide a somewhat limited age control with some uncertainties, suggest early and late Holocene deposits interrupted by a hiatus between them. A patchy vegetation of coastal Amazon rain forest, restinga, salt marsh and some mangrove, which was dominated by Avicennia, covered the study area during the early Holocene period. The occurrence of an early Avicennia dominated mangrove phase has not been reported so far from other sites in northern Brazil. During the mid Holocene mangroves mostly replaced the former coastal Amazon rain forest, restinga and some salt marsh vegetation, reflecting the rise in the RSL. Rhizophora trees expanded markedly and Avicennia became rare. In the sediment core there is apparently a gap between the depths of 115 and 85 cm (possibly starting between 5900 and 5750 b.p.). The deposits above 85 cm are of modern age and were probably deposited during the last decades. This gap can be explained by the lowering of the RSL as is shown for other northern Brazilian coastal sites. The deposition of sediments during the last decades suggests that the modern RSL is high compared to other periods in the Holocene. Pollen data from these deposits show that Rhizophora trees dominate the mangrove forests, also indicating a high RSL.  相似文献   

19.
We determined the rate of migration of coastal vegetation zones in response to salt-water encroachment through paleoecological analysis of mollusks in 36 sediment cores taken along transects perpendicular to the coast in a 5.5 km2 band of coastal wetlands in southeast Florida. Five vegetation zones, separated by distinct ecotones, included freshwater swamp forest, freshwater marsh, and dwarf, transitional and fringing mangrove forest. Vegetation composition, soil depth and organic matter content, porewater salinity and the contemporary mollusk community were determined at 226 sites to establish the salinity preferences of the mollusk fauna. Calibration models allowed accurate inference of salinity and vegetation type from fossil mollusk assemblages in chronologically calibrated sediments. Most sediments were shallow (20–130 cm) permitting coarse-scale temporal inferences for three zones: an upper peat layer (zone 1) representing the last 30–70 years, a mixed peat-marl layer (zone 2) representing the previous ca. 150–250 years and a basal section (zone 3) of ranging from 310 to 2990 YBP. Modern peat accretion rates averaged 3.1 mm yr−1 while subsurface marl accreted more slowly at 0.8 mm yr−1. Salinity and vegetation type for zone 1 show a steep gradient with freshwater communities being confined west of a north–south drainage canal constructed in 1960. Inferences for zone 2 (pre-drainage) suggest that freshwater marshes and associated forest units covered 90% of the area, with mangrove forests only present along the peripheral coastline. During the entire pre-drainage history, salinity in the entire area was maintained below a mean of 2 ppt and only small pockets of mangroves were present; currently, salinity averages 13.2 ppt and mangroves occupy 95% of the wetland. Over 3 km2 of freshwater wetland vegetation type have been lost from this basin due to salt-water encroachment, estimated from the mollusk-inferred migration rate of freshwater vegetation of 3.1 m yr−1 for the last 70 years (compared to 0.14 m yr−1 for the pre-drainage period). This rapid rate of encroachment is driven by sea-level rise and freshwater diversion. Plans for rehydrating these basins with freshwater will require high-magnitude re-diversion to counteract locally high rates of sea-level rise.  相似文献   

20.
Most mangrove swamp/salt flat systems have tidal currents that are ebb dominated, however, some systems show only slight ebb dominance despite having a very large swamp volume relative to the creek volume. Cocoa Ck in northern Australia is such a system. Results are presented from a simple analytical model for flow in Cocoa creek together with detailed water level observations in the swamps. It was found that the primary factor reducing the ebb dominance of this system was the very low slope of the swamp surface. During rising tides, water floods as sheet flow; however, on ebb tides, the surface water slope in the swamp becomes greater than the swamp surface slope, with the result that areas of swamp closest to the main feeder creek (Cocoa Ck) dry before areas furthest from the creek. Thus, about an hour after ebb tide commences, there is a large quantity of water perched on the salt flats/mangroves, tens of centimetres higher than the water in the creek. This water cannot leave the swamp via sheet flow, but must leave through a very small and shallow creek which is also highly constricted by vegetation. This effectively increases the friction on ebb tides and results in a delay in water leaving the swamps and salt flats, reducing any tendency towards ebb dominance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号