首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chick brain synaptosomes or synaptic subfractions were treated with neuraminidase (EC 3.2.1.18) and/or galactose oxidase (EC 1.1.3.9) preparations in which proteolytic activity was inhibited with phenylmethanesulfonyl fluoride followed, after washing, by reductive incorporation of sodium boro[3H]hydride to identify galactose residues exposed on the synaptosomal external surface. Control experiments to demonstrate restriction of labeling to the external surface involved comparing the radioactivity in synaptoplasmic, soluble polypeptides isolated after labeling with labeled, isolated synaptoplasm and examining incorporation into fractions incubated without enzymes. Intactness of the synaptic plasma membrane after labeling was shown by trypsin digestion studies. Polypeptides were separated on sodium dodecyl sulfate polyacrylamide gels and were detected by a liquid scintillation counting procedure. Eleven major radioactive peaks were found after galactose oxidase treatment and reduction of isolated synaptic membranes. When intact synaptosomes were labeled, the same components were detected. When isolated synaptic membranes or intact synaptosomes were treated with neuraminidase before galactose oxidase treatment, three additional components were labeled. These results suggest that (a) chick synaptic membranes have a complex mixture of glycoproteins, (b) all major chick synaptic membrane glycoproteins labeled by galactose oxidase have most or all carbohydrate groups exposed at the exterior surface of the synaptosome, (c) all major, externally-disposed polypeptides of these synaptic membranes are glycoproteins.  相似文献   

2.
Some characteristics of the protein kinase activity associated with a synaptosomal plasma membrane (synaptic membrane) fraction and a synaptic junction fraction have been compared. Autoradiography of the phosphorylated fractions separated on sodium dodecyl sulfate polyacrylamide gels showed that cyclic AMP stimulates the phosphorylation of five polypeptides in synaptic membranes, whereas no cyclic AMP dependency could be detected in synaptic junctions. Kinetic studies demonstrated that synaptic junctions contain a high Km and a low Km protein kinase activity while only the high Km activity could be detected in synaptic membranes. The intrinsic ATPase activity of synaptic membranes was shown to strongly interfere with measurements of protein kinase activity. Cyclic AMP binding experiments revealed a 2.6-fold enrichment of cyclic AMP binding capacity in synaptic junctions as compared to synaptic membranes. Protein phosphatase activity was not detected in synaptic junctions but was associated with synaptic membranes, where cyclic AMP was shown to either stimulate or inhibit the dephosphorylation of different polypeptides.  相似文献   

3.
Some characteristics of the protein kinase activity associated with a synaptosomal plasma membrane (synaptic membrane) fraction and a synaptic junction fraction have been compared. Autoradiography of the phosphorylated fractions separated on sodium dodecyl sulfate polyacrylamine gels showed that cyclic AMP stimulates the phosphorylation of five polypeptides in synaptic membranes, whereas no cyclic AMP dependency could be detected in synaptic junctions. Kinetic studies demonstrated that synaptic junctions contain at high Km and a low Km protein kinase activity while only the high Km activity could be detected in synaptic membranes. The intrinsic ATPase activity of synaptic membranes was shown to strongly interfere with measurements of protein kinase activity. Cyclic AMP binding experiments revealed a 2.6-fold enrichment of cyclic AMP binding capacity in synaptic junctions as compared to synaptic membranes. Protein phosphatase activity was not detected in synaptic junctions but was associated with synaptic membranes, where cyclic AMP was shown to either stimulate or inhibit the dephosphorylation of different polypeptides.  相似文献   

4.
A phosphatidylcholine (PC) exchange protein from bovine liver was used to exchange endogenous synaptosomal membrane PC's with PC's of defined fatty-acid composition from phospholipid vesicles. Up to 50% of the total synaptosomal PC could be exchanged during a 3 h incubation with PC's which were in the liquid-crystalline state at the temperature of incubation (dimyristoyl-, dioleoyl- and dielaidoyl-PC). The biphasic kinetics of the exchange of 14C-labeled 1-palmitoyl-2-oleoyl-PC into isolated synaptic plasma membrane vesicles indicated that the half-time for transbilayer equilibrium of PC in these membranes was about 10 h. Hence, the observed 50% exchange of total synaptosomal PC probably represented nearly complete exchange of PC in the outer face of the synaptosomal plasma membrane. This extensive exchange was accomplished without apparent loss of synaptosomal function, including membrane potential and high-affinity uptake of choline and gamma-aminobutyric acid. PC's in the gel state (dipalmitoyl- and distearoyl-PC) could not be exchanged extensively into the synaptosomal membranes. However, from within gel-state distearoyl-PC liposomes, a trace amount of fluid 1-palmitoyl-2-oleoyl-PC (Tm less than 10 degrees C) could be preferentially exchanged into the synaptosomes at 32 degrees C with little transfer of the saturated PC.  相似文献   

5.
Synaptosomal plasma membranes were isolated from Torpedo cholinergic synaptosomes which had been purified as previously described or repurified by equilibrium centrifugation. The synaptosomal plasma membrane could be distinguished from postsynaptic membranes by the absence of postsynaptic specific markers (nicotinic AChR) and by its low intramembrane particle complement after freeze fracture. In addition, the presynaptic membrane fraction contained acetylcholinesterase. Gel electrophoresis permitted the identification of a major protein component of the presynaptic membrane fraction which had a molecular weight of 67,000. This protein was not found in postsynaptic membrane or synaptic vesicle fractions. Thus it appeared to be specific to the nerve terminal plasma membrane.  相似文献   

6.
The turnover of arachidonoyl groups in synaptosomal phospholipids after stimulation by K+ was examined. Raising the K+ concentration in the incubation medium from 5 to 55 mM caused a rapid hydrolysis of labeled arachidonate from the synaptosomal phospholipids. Under this condition, radioactivity released from phosphatidylinositols was proportionally higher than that from phosphatidylcholines. Hydrolysis of arachidonoyl group from phospholipids was correlated to an increase in radioactivity in the free fatty acid-ion complex which appeared in the interphase after extraction with chloroform-methanol 2:1 (v/v). The K+-evoked phospholipid hydrolysis and the formation of fatty acid-ion complex, were Ca2+-dependent. Phospholipid deacylation activity was localized mainly in synaptic vesicles and synaptic plasma membranes but not in the mitochondria. The stimulated turnover of synaptosomal phospholipids appeared to be mediated by the deacylation-reacylation mechanism, because similar treatment with high K+ stimulated the incorporation of labeled arachidonate into phosphatidylinositols and phosphatidylcholines of synaptosomes. The possible physiological implication of membrane lipid involvement in synaptic processes is discussed.  相似文献   

7.
Fusion between synaptic vesicles and plasma membranes isolated from rat brain synaptosomes is regarded as a model of neurosecretion. The main aim of current study is to investigate whether the synaptosomal soluble proteins are essential members of Ca(2+)-triggered fusion examined in this system. Fusion experiments were performed using fluorescent dye octadecylrhodamine B, which was incorporated into synaptic vesicle membranes at self-quenching concentration. The fusion of synaptic vesicles, containing marker octadecylrhodamine B, with plasma membranes was detected by dequenching of the probe fluorescence. Membrane fusion was not found in Ca(2+)-supplemented buffer solution, but was initiated by the addition of the synaptosomal soluble proteins. When soluble proteins were treated with trypsin, they lost completely the fusion activity. These experiments confirmed that soluble proteins of synaptosomes are sensitive to Ca(2+) signal and essential for membrane fusion. The experiments, in which members of fusion process were treated with monoclonal antibodies raised against synaptotagmin and synaptobrevin, have shown that antibodies only partially inhibited fusion of synaptic vesicles and plasma membranes in vitro. These results indicate that other additional component(s), which may or may not be related to synaptobrevin or synaptotagmin, mediate this process. It can be assumed that fusion of synaptic vesicles with plasma membranes in vitro depends upon the complex interaction of a large number of protein factors.  相似文献   

8.
Studies on the turnover of mouse brain synaptosomal proteins   总被引:1,自引:1,他引:0  
(l) The half-lives of the proteins of various fractions of whole mouse brain increase with increasing insolubility; the supernatant and hypotonic-extractable proteins had half-lives of about 13 days, whereas the membrane proteins solubilized with Triton X-100 and SLS had half-lives of about 18 days. The proteins of the subfractions of synaptosomes had half-lives ranging from 15 to 19 days; those in the cytoplasm had a half-life of 18·3 days, in the membranes, about 17 days and in the synaptic vesicles, 15·6 days. (2) Although the half-life of the synaptic vesicles was not significantly different from that of other synaptosomal subfractions, the vesicles exhibited a different protein pattern on acrylamide gels, an observation which implies that the proteins of the vesicles are qualitatively different from those of other synaptic membranes. (3) The uptake of labelled lysine into the cytoplasm of the synaptosomes of youg mice in vivo was very rapid. (4) The data derived from the relative specific radioactivities of synaptosomal fractions compared with their whole brain analogs support the contention that a sizeable fraction of the synaptosomal cytoplasmic protein was transported to the synapse by axoplasmic flow. The relative specific radioactivities of synaptosomal membrane and synaptic vesicle proteins rose much more quickly than the comparable activities for the cytoplasmic material, and the alternate possibility of synthesis in situ is discussed.  相似文献   

9.
The in vitro phosphorylation of actin from rat cerebral cortex   总被引:5,自引:0,他引:5  
Actin was phosphorylated by a cyclic AMP-stimulated protein kinase in a lysed synaptosomal fraction incubated with [gamma-32P]ATP, while calcium had no effect on endogenous labeling of the protein. Incubation of an intact synaptosomal fraction with 32P-inorganic phosphate did not lead to any detectable phosphorylation of actin in the presence or absence of dibutyryl-cyclic AMP, or chemical depolarization. It is suggested that actin is not phosphorylated in the physiologically relevant intact synaptosomes but gains access to protein kinases on lysis.  相似文献   

10.
We have made a monoclonal antibody which specifically recognizes smg p25A among many ras p21/ras p21-like GTP-binding proteins thus far purified from bovine brain membranes. By use of this antibody, we have investigated the localization and subcellular distribution of smg p25A in rat brain by light and electron microscopic immunocytochemistry and by immunoblotting. By light microscopic immunocytochemistry, specific immunoreactivity is widely distributed, most abundant in neuropil, weak in neuronal somata, and absent from white matter. By electron microscopic immunocytochemistry, intense labeling is demonstrated on most of the synapses and concentrated in the presynaptic area where synaptic vesicles are observed. Presynaptic plasma membranes are weakly labeled but mitochondria, postsynaptic plasma membranes, and postsynaptic densities are unlabeled. In subcellular fractionation analysis of cerebrum, about one-fifth of smg p25A is found in the soluble cytosol fraction and the rest is found in the particulate fraction. About half of the particulate-bound smg p25A is recovered in the P2 fraction containing synaptosomes, mitochondria, and myelin, among which a major portion of smg p25A is recovered in the synaptosomal fraction. In the synaptosomal fraction, smg p25A is concentrated about 8-fold in the fraction containing synaptic vesicles and about 3-fold in the fraction containing synaptic plasma membranes compared with the original homogenate. smg p25A is present at a low level in the fraction containing synaptosomal soluble substances but almost absent from the fractions containing intrasynaptosomal mitochondria or post-synaptic densities. These results suggest that smg p25A plays important roles in the regulation of synaptic functions such as exo-endocytotic recycling of synaptic vesicles during neurotransmitter release.  相似文献   

11.
Brain membrane lipid fatty acid composition and consequently membrane fluidity change with increasing age. Intracellular fatty acid binding proteins (FABPs) such as heart H-FABP and the brain specific B-FABP, detected by immunoblotting of brain tissue, are thought to be involved in fatty acid uptake, metabolism, and differentiation in brain. Yet, almost nothing is known regarding the effect of age on the expression of the cytosolic fatty acid binding proteins (FABPs) or their content in brain subfractions. Electrophoresis and quantitative immunoblotting were used to examine the content of these FABPs in synaptosomes in brains from 4, 15, and 25 month old C57BL/6NNia male mice. Brain H-FABP and B-FABP were differentially expressed in mouse brain subcellular fractions. Brain H-FABP was highly concentrated in synaptosomal cytosol. The level of brain H-FABP in synaptosomes, synaptosomal cytosol, and intrasynaptosomal membranes was decreased 33, 35, and 43%, respectively, in 25 month old mice. B-FABP was detected in lower quantity than H-FABP. More important, B-FABP decreased in synaptosomes, synaptic plasma membranes, and synaptosomal cytosol from brains of 25 month old mice. In contrast to H-FABP, B-FABP was not detectable in the intrasynaptosomal membranes in any of the three age groups of mice. In conclusion, expression of both H-FABP and B-FABP was markedly reduced in aged mouse brain. Age differences in brain H-FABP and B-FABP levels in synaptosomal plasma membranes and synaptosomal cytosol may be important factors modulating neuronal differentiation and function.  相似文献   

12.
The effect of antiepileptic drug ethosuximide and sodium valproat on fusion of synaptic vesicles with synaptosomal plasma membranes was studied in cell-free system. It was shown that ethosuximide and sodium valproat increases the rate of Ca(2+)-dependent fusion reaction in vitro. We have found that convulsant drugs pentylenetetrazol and picrotoxin did not fuse membrane components of the model system. Ethosuximide- and sodium valproat-provoked fusion of synaptic vesicles and plasma membranes of synaptosomes were suppressed by convulsant drugs pentylenetetrazol and picrotoxin.  相似文献   

13.
Homogenization of fresh brain tissue in isotonic medium shears plasma membranes causing nerve terminals to become separated from their axons and postsynaptic connections. The nerve terminal membranes then reseal to form synaptosomes. The discontinuous Percoll gradient procedure described here is designed to isolate synaptosomes from brain homogenates in the minimum time to allow functional experiments to be performed. Synaptosomes are isolated using a medium-speed centrifuge, while maintaining isotonic conditions and minimizing mechanically damaging resuspension steps. This protocol has advantages over other procedures in terms of speed and by producing relatively homogeneous synaptosomes, minimizing the presence of synaptic and glial plasma membranes and extrasynaptosomal mitochondria. The purified synaptosomes are viable and take up and release neurotransmitters very efficiently. A typical yield of synaptosomes is between 2.5 and 4 mg of synaptosomal protein per gram rat brain. The procedure takes approximately 1 h from homogenization of the brain until collection of the synaptosomal suspension from the Percoll gradient.  相似文献   

14.
—The brain-specific antigens 14·3·2, GFA, A5, F3, D1, D2, D3 and C1 were quantitated in a short-term astroglial cell culture taken as a model of glial cells, and in synaptosomes, synaptosomal membranes and synaptic vesicles as neuronal material. Furthermore, the antigens were quantitated in newborn rat brain, as this served as the starting material for the cell culture. The membrane antigens C1, D1, D2 and D3 were absent from the cultured astroglia, indicating a neuronal origin for these antigens. C1 was enriched 3-fold in synaptosomes and synaptosomal membranes and more than 10-fold in synaptic vesicles indicating that this antigen might be a marker protein for nerve endings. The name Synaptin is introduced for this antigen. Conversely, the data on the antigens D1, D2 and D3 indicated that these antigens were not restricted to the synaptosomes although they were of neuronal origin. Trace amounts of the cathodal part of the heterogeneous cytoplasmic antigen 14·3·2 were present in the cell culture, possibly originating from a few contaminating neurons. The cytoplasmic antigens A5 and F3 were found both in the astroglial culture and in the synaptosomal fraction. F3, however, was found in low concentration in the synaptosomes and 3-fold enriched in newborn rat brain compared to rat brain from 35-day-old rats or to 21-day-old brain cell cultures. It was therefore regarded as a brain specific fetal antigen. The antigen GFA was highly enriched in the astroglial culture compared to whole brain and only trace amounts were found in the synaptosomal fraction supporting the astroglial origin of this antigen.  相似文献   

15.
The accessibility to trypsin of 125I-labeled latrotoxin bound to rat brain synaptosomes was investigated. It was shown that latrotoxin bound to synaptosomes in the cold can be practically completely removed by trypsin treatment. The resistance of latrotoxin to proteolysis increases during its incubation with synaptosomes (37 degrees C). Concanavalin A (10(-6) M) decreases toxin binding by 30%, but fully prevents internalization (incorporation). Moreover, latrotoxin is not incorporated into synaptosomal membrane fragments irrespective of duration and temperature of incubation. Latrotoxin incorporated into synaptosomal membranes undergoes degradation by endogenous proteases resulting in the formation of TCA-soluble products.  相似文献   

16.
Subfractionation of the optic tectum in chick embryos results in the isolation of two fractions enriched in synaptosomes (fraction A and fraction B). In chicks after hatching, this fractionation results in the isolation of a single synaptosomal fraction (fraction B) and of a fraction enriched in myelin membranes devoid of synaptosomes (fraction A). The lipid composition of synaptosomal fractions (A and B) and corresponding synaptosomal plasma membranes has been analyzed and compared to the lipid composition of similar fractions isolated from 2–3 day-old chicks. The phospholipid composition of fraction A in embryos was mainly represented by phosphatidylcholine (PC) and phosphatidylethanolamine (PE). The PE content was significantly lower than that of PC, which accounted for by approximately 50%. Sphingomyelin (SP) and phosphatidylinositol (PI) accounted for by only 6% of the total membrane phopsholipids. Fraction A isolated from the young chicks showed many significant changes. PC accounted for by approximately 40% and PE made up 35%. The amount of phosphatidylserine (PS) and SP increased. These data parallel our previous morphological observations, which showed that fraction A contains immature synaptosomes in embryos but myelin membranes and no synaptosomes in the young chicks. Fraction B has been shown to contain synaptosomes at all stages considered. It possessed in embryos a lipid composition similar to fraction A, except that PC content was higher in young embryos. The analyses on membrane fractions confirmed these results. On the contrary, this fraction showed many significant changes after hatching. The content of PC was significantly reduced, PE/PC ratio was significantly increased as well as ethanolamine plasmalogen (PLE) content. The percentage of PS, PI and SP were increased. The composition of fatty acids of the total fraction of phospholipids was also examined. The results parallel the observations on phospholipid classes.  相似文献   

17.
Subjecting brain homogenates to differential speed and sucrose density gradient centrifugation resulted in the isolation of a membrane fraction from the post-mitochondrial supernatant with properties and marker enzyme profiles typical of plasma membranes. This membrane fraction is compared with the microsomes and the synaptic plasma membranes isolated from synaptosomes. Like the synaptic plasma membranes, membranes obtained from the post-mitochondrial supernatant were enriched five-fold in 5′-nucleotidase activity. However, the latter membranes were lower in (Na+, K+)-ATPase activity and higher in NADPH-cytochrome C reductase activity as compared to the synaptic plasma membranes. The post-mitochondrial plasma membranes were also different from the microsomes in their respective marker enzyme activities. Electron microscopic examination indicated largely membranous vesicles for both plasma membrane fractions with little contamination by myelin, mitochondra and intact synaptosomes. The phospholipid and acyl group profiles of the two plasma membrane fractions were surprisingly similar, but they were different from the characteristic profiles of myelin and mitochondria. It is concluded that plasma membranes isolated from the post-mitochondrial supernatant fraction are derived largely from neuronal and glial soma and are thus designated the somal plasma membrane fraction.  相似文献   

18.
The protein organization of rat brain synaptic plasma membranes (SPM) and synaptic vesicles (SV) was investigated by surface iodination and one- and two-dimensional electrophoresis. Polypeptides of molecular weights (MWs, in Kilodaltons) 170 K, 135 K, 96-86 K, 68-64-61 K, 56 K, 52 K, 38 K, 35-33 K, and 18 K are predominantly or exclusively exposed on the extracellular side of synaptosomes. Several polypeptides of MW between 70 K and 40 K are exclusively exposed on the cytoplasmic side of SPM. The use of two-dimensional electrophoresis allowed to recognize that, for some classes of MW, there are polypeptides of nearly the same MW and different isoelectric points exposed on both sides of SPM. The synaptosomal membrane shows a predominance of acidic proteins on the extracellular side and more neutral and basic proteins on the cytoplasmic side. With respect to SPM, SV are particularly enriched with polypeptides of MW 71 K, 56 K, 39-38 K, 32 K, 16 K, and 15 K. One of them, a doublet of MW 39-38 K, is the most highly labeled species upon surface iodination and is similar, but not identical, with a doublet located on the cytoplasmic side of SPM.  相似文献   

19.
We have studied in Torpedo marmorata electric organ synaptosomes the equilibration kinetics of spin-labeled phospholipid analogues initially incorporated into the outer plasma membrane monolayer. As assayed by evoked releases of both ATP and acetylcholine, the nerve endings were closed vesicles containing an energy source. The aminophospholipids (phosphatidylethanolamine and phosphatidylserine) were translocated toward the inner membrane leaflet faster and to a higher extent than their choline-containing counterparts (phosphatidylcholine and sphingomyelin). This difference was abolished by incubation of synaptosomal membranes with N-ethylmaleimide, suggesting that the accumulation of aminophospholipids in the inner layer was driven by a protein. This phenomenon is comparable with what was described in plasma membranes of other eucaryotic cells (erythrocyte, lymphocyte, platelet, fibroblast), and thus we would suggest that an aminophospholipid translocase, capable of moving the aminophospholipids from the outer to the inner layer at the expense of ATP, is also present in the synaptosomal plasma membrane.  相似文献   

20.
Glycoproteins in the external surface of intact synaptosomes from rat brain cortex have been studied by oxidation of exposed galactose and galactosamine groups by galactose oxidase followed by reduction with labeled sodium borohydride. Purified synaptosomes were labeled, disrupted by osmotic shock, and the particulate components were fractionated on diatrizoate to give four synaptosomal membrane fractions (A to D) and a mitochondrial pellet (E). Fractions A and B represent highly purified synaptosomal plasma membranes. After separation of their polypeptides by electrophoresis, 45 of the label was present in two bands: one about 72 000 and the other between 7800 and 3200 daltons. Seven other bands were labeled to various degrees: 160 000, 96 000, 53 000, 39 000, 34 000, 23 000 and 16 000 daltons. With isolated membranes (which incorporate 5–6 times more label) 45 of label was present in polypeptides in three ranges: 160 000–96 000, 70 000–40 000 and 7800-3200. The number of polypeptides that can be labeled by treatment of isolated membranes is very large. In comparison, glycoproteins whose topographical distribution permits interaction with large molecules at the synaptic surface are very limited. It is further suggested that the external synaptosome membrane involves a relatively tight network of interacting molecules that cannot be readily penetrated by large molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号