首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The substrate 16-methylene estra-1,3,5(10)-triene-3,17 beta-diol (16-methylene estradiol-17 beta) and its enzyme-generated alkylating product, 3-hydroxy-16-methylene estra-1,3,5(10)-triene-17-one (16-methylene estrone), were synthesized to study the 17 beta- and 20 alpha-hydroxysteroid dehydrogenase activities which coexist in homogeneous enzyme purified from human placental cytosol. 16-Methylene estradiol, an excellent substrate (Km = 8.0 microM; Vmax = 2.8 mumol/mg/min) when enzymatically oxidized to 16-methylene estrone in the presence of NAD+ (256 microM), inactivates simultaneously the 17 beta- and 20 alpha-activities in a time-dependent and irreversible manner following pseudo-first order kinetics (t1/2 = 1.0 h, 100 microM, pH 9.2). 16-Methylene estradiol does not inactivate the enzyme in the absence of NAD+. 16-Methylene estrone (Km = 2.7 microM; Vmax = 2.9 mumol/mg/min) is an affinity alkylator (biomolecular rate constant k'3 = 63.3 liters/mol-s, pH 9.2; KI = 261 microM; k3 = 8.0 X 10(-4) S-1, pH 7.0) which also simultaneously inhibits both activities in an irreversible time-dependent manner (at 25 microM; t1/2 = 7.2 min, pH 9.2; t1/2 = 2.7 h, pH 7.0). Substrates (estradiol-17 beta, estrone, and progesterone) protect against inhibition of enzyme activity by 16-methylene estrone and 16-methylene estradiol. Affinity radioalkylation studies using 16-methylene [6,7-3H]estrone demonstrate that 1 mol of alkylator binds per mol of inactivated enzyme dimer. Thus, 16-methylene estradiol functions as a unique substrate for the enzymatic generation of a powerful affinity alkylator of 17 beta,20 alpha-hydroxysteroid dehydrogenase and should be a useful pharmacological tool.  相似文献   

2.
The effect of epostane [(2 alpha,4 alpha,5 alpha,17 beta)-4,5-epoxy-17-hydroxy-4,17-dimethyl-3-oxo- androstane-2-carbonitrile] on the conversion of pregnenolone to progesterone and of dehydroepiandrosterone (DHA) to androstenedione was studied in human term placental microsomes and in comparison with human ovarian and adrenal microsomes. Using pregnenolone as substrate, 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD) activity in the three tissues had a similar Km (3-6 microM) but Vmax ranged from 1.3 nmol/mg protein per min in ovary to 10 nmol/mg protein per min in placenta. Epostane inhibited 3 beta-HSD activity in all three tissues with the characteristics of a pure competitive inhibitor: mean Ki values were 1.7 microM for placenta, 0.5 microM for adrenal and 0.1 microM for ovary. Moreover, in placental microsomes epostane inhibited the conversion of DHA to androstenedione with a Ki of 0.6 microM. The mechanism of action of epostane explains its effectiveness in blocking progesterone synthesis during the luteal phase and in pregnancy in women, and its strong anti-steroidogenic effect in other endocrine tissues in vitro.  相似文献   

3.
Plasma levels of estrone sulfate, estrone and estradiol, and progesterone were measured in six ewes throughout pregnancy. Estrone sulfate was detectable at around 70 days of gestation with values ranging between 0.3 – 0.7 pmol (0.1 – 0.3 ng) per ml. The level increased steadily to between 3 – 24 pmol (1 – 9 ng) per ml at about 2 days before lambing. An upsurge then followed reaching a maximal concentration between 40 – 130 pmol (15 – 50 ng) per ml. Unconjugated estrone and estradiol levels were appreciable only in the last 2–3 days of pregnancy and the profiles at this time followed closely that of estrone sulfate so that the molar ratio of estrone sulfate: estrone: estradiol remained remarkably constant at approximately 100:2:1 in spite of the great individual variations in absolute concentrations.The progesterone level was higher than that of estrone sulfate throughout pregnancy except 1–2 days prior to parturition. The sharp decline in progesterone concentration in the last two days coincided with the upsurge of estrone sulfate, but the net decrease in concentration was only about one-third of the net increase in estrone sulfate concentration during this period. These data are discussed in relation to the possible role of estrone sulfate and the possibility of placental conversion of progesterone to estrone sulfate during late pregnancy in the ewe.  相似文献   

4.
In human pregnancy, placental 3 beta-hydroxy-5-ene-steroid dehydrogenase and steroid 5----4-ene-isomerase produce progesterone from pregnenolone and metabolize fetal dehydroepiandrosterone sulfate to androstenedione, an estrogen precursor. The enzyme complex was solubilized from human placental microsomes using the anionic detergent, sodium cholate. Purification (500-fold, 3.9% yield) was achieved by ion exchange chromatography (Fractogel-TSK DEAE 650-S) followed by hydroxylapatite chromatography (Bio-Gel HT). The purified enzyme was detected as a single protein band in sodium dodecylsulfate-polyacrylamide gel electrophoresis (monomeric Mr = 19,000). Fractionation by gel filtration chromatography at constant specific enzyme activity supported enzyme homogeneity and determined the molecular mass (Mr = 76,000). The dehydrogenase and isomerase activities copurified. Kinetic constants were determined at pH 7.4, 37 degrees C for the oxidation of pregnenolone (Km = 1.9 microM, Vmax = 32.6 nmol/min/mg) and dehydroepiandrosterone (Km = 2.8 microM, Vmax = 32.0 nmol/min/mg) and for the isomerization of 5-pregnene-3,20-dione (Km = 9.7 microM, Vmax = 618.3 nmol/min/mg) and 5-androstene-3,17-dione (Km = 23.7 microM, Vmax = 625.7 nmol/min/mg). Mixed substrate analyses showed that the dehydrogenase and isomerase reactions use the appropriate pregnene and androstene steroids as alternative, competitive substrates. Dixon analyses demonstrated competitive inhibition of the oxidation of pregnenolone and dehydroepiandrosterone by both product steroids, progesterone and androstenedione. The enzyme has a 3-fold higher affinity for androstenedione than for progesterone as an inhibitor of dehydrogenase activity. Based on these competitive patterns of substrate utilization and product inhibition, the pregnene and androstene activities of 3 beta-hydroxy-5-ene-steroid dehydrogenase and steroid 5----4-ene-isomerase may be expressed at a single catalytic site on one protein in human placenta.  相似文献   

5.
Using human term placental mitochondrial preparations, optimal conversion of [3H]pregnenolone to [3H]progesterone was obtained at 30 min incubation and with a mitochondrial protein content of 2.5-3.5 mg/ml. Estradiol, estrone, progesterone and testosterone in a dose range of 0.03-8.66 mumol inhibited the in vitro conversion of [3H]pregnenolone to [3H]progesterone by placental homogenates. All four steroids inhibited the pregnenolone to progesterone conversion in a dose-dependent manner. The ID50 (dose required to inhibit conversion of pregnenolone to progesterone by 50%) was 0.04 mumol for estradiol, 0.13 mumol for testosterone, 0.3 mumol for progesterone and 1.0 mumol for estriol. Neither gonadotropin releasing hormone (50-1000 ng) nor human chorionic gonadotropin (5-500 IU) affected the placental basal conversion rate of pregnenolone to progesterone in vitro. Our findings indicate that steroid hormones such as estradiol, estrone, testosterone and progesterone can inhibit local placental progesterone biosynthesis through inhibition of the enzyme complex 5-ene-3 beta-hydroxysteroid dehydrogenase.  相似文献   

6.
In human placenta, 3 beta-hydroxy-5-ene-steroid dehydrogenase and steroid 5----4-ene-isomerase, an enzyme complex found in microsomes and mitochondria, synthesizes progesterone from pregnenolone and androstenedione from fetal dehydroepiandrosterone sulfate. The dehydrogenase and isomerase activities of the mitochondrial enzyme were copurified (733-fold) using sequential cholate solubilization, ion exchange chromatography (DEAE-Toyopearl 650S), and hydroxylapatite chromatography (Bio-Gel HT). Enzyme homogeneity was demonstrated by a single protein band in SDS-polyacrylamide gel electrophoresis (monomeric Mr = 41,000), gel filtration at constant specific enzyme activity (Mr = 77,000), and a single NH2-terminal sequence. Kinetic constants were determined for the oxidation of pregnenolone (Km = 1.6 microM, Vmax = 48.6 nmol/min/mg) and dehydroepiandrosterone (Km = 2.4 microM, Vmax = 48.5 nmol/min/mg) and for the isomerization of 5-pregnene-3,20-dione (Km = 9.3 microM, Vmax = 914.2 nmol/min/mg) and 5-androstene-3,17-dione (Km = 27.6 microM, Vmax = 888.4 nmol/min/mg. Mixed substrate studies showed that the dehydrogenase and isomerase activities utilize their respective pregnene and androstene substrates competitively. Dixon analysis demonstrated that the product steroids, progesterone and androstenedione, are competitive inhibitors of the C-21 and C-19 dehydrogenase activities. Enzyme purified from mitochondria and microsomes had similar kinetic profiles with respect to substrate utilization, product inhibition, and cofactor (NAD+) reduction (mean Km +/- SD using C-19 and C-21 dehydrogenase substrates = 26.4 +/- 0.8 microM, mean Vmax = 73.2 +/- 1.3 nmol/min/mg). Pure enzyme from both organelles exhibited identical biophysical properties in terms of molecular weight and subunit composition, pH optima (pH 9.8, dehydrogenase; pH 7.5, isomerase), temperature optimum (37 degrees C), stability in storage and solution, effects of divalent cations, and the single NH2-terminal sequence of 27 amino acids. These results suggest that the mitochondrial and microsomal enzymes are the same protein localized in different organelles.  相似文献   

7.
17 beta-Hydroxysteroid oxidoreductase, as well as estrone sulfate and dehydroepiandrosterone sulfate sulfatases, were found in the plasma membrane of microvilli of the fetal syncytiotrophoblast. Because of their location, these enzymes may influence feto-maternal transfer of steroids circulating as sulfates, the utilization of sulfated estrogen precursors and the proportion of estrone and estradiol delivered towards fetal and maternal circulations. Microvillar vesicles isolated from human term placentas were disrupted in hypotonic medium to obtain a membrane preparation. A fraction of the estradiol 17 beta-oxidoreductase (E2DH) activity in the vesicle remained associated to the membrane after disruption and treatment with 2 M NaCl. The membrane-associated activity was resistant to inhibition with trypsin and did not react with a polyclonal antibody which neutralized cytosolic E2DH activity. The membrane-associated enzyme was solubilized with a cholate-glycerol buffer solution and purified on Sephadex G-100. The estimated molecular weight of the solubilized enzyme (137 kDa) appears to correspond to a tetramer since it was found to be about twice the size of the cytosolic enzyme. Both enzymes focused in polyacrylamide gels at pH 5.2. The Km relative to E2 of the membrane-associated E2DH (1.3 microM) differs from those of mitochondrial (0.43 microM), microsomal (0.69 microM) and cytosolic (11 microM) fractions. The cytosolic and the microvillar membrane associated 17 beta-hydroxysteroid oxidoreductases also differ in their specificity for C18 and C19 steroid substrates and in their pH dependence patterns. Sulfatases acting on estrone sulfate and dehydroepiandrosterone sulfate in microvillar membranes were insensitive to trypsin and as resistant to washes with 2 M NaCl as alkaline phosphatase. This data indicated that steroid sulfatases are also microvillar membrane associated enzymes of potential physiologic importance in the hydrolysis of estrogen precursors.  相似文献   

8.
Long-term alcohol consumption results in menstrual irregularities due to the inhibition of progesterone secretion. Some progesterone metabolites, including three pregnanolone isomers (PI), abate, while pregnenolone sulfate (PregS) and dehydroepiandrosterone sulfate (DHEAS) increase, alcohol tolerance. The rationale of this study was to evaluate how the neuroactive steroids reflect the impaired progesterone formation in premenopausal women treated for alcohol addiction, and whether detoxification therapy could restore female reproductive functions and psychosomatic stability by reinstatement of the steroid biosynthesis. Accordingly, serum allopregnanolone (3alpha-hydroxy-5alpha-pregnan-20-one (P3alpha5alpha)), pregnanolone (P3alpha5beta), isopregnanolone (P3beta5alpha) and epipregnanolone (P3beta5beta), progesterone, PregS, pregnenolone, 17alpha-hydroxy-pregnenolone (Preg17), 17alpha-hydroxy-progesterone (Prog17), DHEA, DHEAS, cortisol and estradiol were measured in 20 women during the therapy (start, 3 days, 14 days, 1 month, 4 months), and in 17 controls, using GC-MS or RIA and evaluated by age-adjusted ANCOVA with status and phase of the menstrual cycle (PMC) as factors, and status-PMC interaction. The patients exhibited depressed progesterone, Prog17, PI, and estradiol, a decreased progesterone/pregnenolone ratio, a decreased ratio of neuroinhibiting P3alpha5alpha to neuroactivating PregS, and an elevated PregS and PregS/pregnenolone ratio. The treatment mostly restored the indices. The reduction of neuroinhibiting pregnanolone isomers in the patients is primarily associated with the impairment in ovarian steroid biosynthesis. Nevertheless, changes in enzyme activities connected with the formation of PI and the influence of altered physiological requirements on the balance between endogenous neuroinhibiting and neuroactivating steroids are also likely. The reinstatement of serum estradiol, progesterone, and PI during the therapy demonstrates its favorable effect on both reproductive functions and the psychosomatic stability of the patients.  相似文献   

9.
Monolayer cultures of human midterm and term placentae have been established following trypsin dispersion of placental minces. Maintenance of endocrine function was monitored by the concentrations of specific hormones in the culture media. At either gestational age the cultures 1) secret estradiol-17beta(1) and estrone (in a ratio of about 1:20) and aromatize 3H- or 14C-dehydroepiandrosterone sulfate and 14C-androstenedione, estrogen production being markedly enhanced by addition of dehydroepiandrosterone (10(-6)7) to the culture medium; 2) metabolize 3H-pregnenolone to progesterone and 14C-cortisol to cortisone; and 3) produce increasing amounts of chorionic gonadotropin and decreasing amounts of placental lactogen during the first week in culture. It is proposed that the model is highly suited to the study of factors affecting hormonogenesis by the human placenta whether they be of maternal or of fetal origin.  相似文献   

10.
Alterations of progesterone metabolism and especially of 20 alpha-hydroxysteroid dehydrogenase (20 alpha-HSD) activity were studied in cultured rat granulosa cells following various treatments. The cells were incubated for up to 48 h with or without follicle-stimulating hormone (FSH), androgens, hydroxyflutamide, estrogens, chlorea toxin, and dibutyryl cAMP [Bu2 cAMP]. Subsequently, the cells were incubated for 3 h with [4-14 C] progesterone (0.5 microM). The progesterone utilization and accumulation of 20 alpha-reduced and 5 alpha-reduced metabolites were assessed following thin-layer chromatography separation of radiolabeled steroids. Both FSH (1 microgram/ml) and testosterone (0.5 microM) decreased the 20 alpha-HSD activity by decreasing the maximal velocity (by 52% and 37%, respectively) without changing significantly the Km value. The inhibition of 20 alpha-HSD was demonstrable following 12 and 24 h exposure to FSH and following 24 and 48 h exposure to testosterone. Effects comparable to that induced by testosterone were elicited by other androgens (androstenedione and 5 alpha-dihydrotestosterone), but not by estrogens (estradiol-17 beta and estrone). Hydroxyflutamide reversed testosterone-induced effects: the increase of endogenous progesterone accumulation and the decrease of 20 alpha-HSD activity. Both cholera toxin (0.001-10 micrograms/ml) and Bu2 cAMP (62.5-1000 micrograms/ml) caused a dose-dependent inhibition of 20 alpha-HSD activity. Present results indicate that: the inhibition of 20 alpha-HSD by both FSH and androgens may be of a noncompetitive nature; androgen action on 20 alpha-HSD may be a true androgenic, receptor-mediated effect; and cAMP may mediate the FSH action on 20 alpha-HSD activity.  相似文献   

11.
17-beta hydroxysteroid dehydrogenase type 2 (HSD17B2) oxidizes estradiol to estrone, testosterone to androstenedione, and 20 alpha-dihydroprogesterone to progesterone. HSD17B2 is highly expressed in human placental tissue where it is localized to placental endothelial cells lining the fetal compartment. The aim of this study was to investigate the effects of potential regulatory factors including progesterone, estradiol, and retinoic acid (RA) onHSD17B2 expression in primary human placental endothelial cells in culture.HSD17B2 mRNA expression was not regulated by progesterone, the progesterone agonist R5020, or estradiol treatment. RA significantly induced HSD17B2 mRNA levels and enzyme activity in a dose- and time-dependent manner. Maximal stimulation occurred at Hour 48 at an RA concentration of 10(-6) M. Both retinoic acid receptor alpha (RARA) and retinoid X receptor alpha (RXRA) were readily detected by immunoblotting in isolated placental endothelial cells. RNA interference directed against RARA or RXRA led to reduced basal levels of HSD17B2 mRNA levels and significantly abolished RA-stimulated HSD17B2 expression. Together, these data indicate that regulation of HSD17B2 mRNA levels and enzymatic activity by RA in the placenta is mediated by RARA and RXRA.  相似文献   

12.
The enzyme 17β-hydroxysteroid dehydrogenase (17β-HSD) catalyzes the 17β-oxidation/reduction of C18- and C19-steroids in a variety of tissues. Three human genes encoding isozymes of 17β-HSD, designated 17β-HSD types 1, 2 and 3 have been cloned. 17β-HSD type 1 (also referred to as estradiol 17β-dehydrogenase) catalyzes the conversion of estrone to estradiol, primarily in the ovary and placenta. The 17β-HSD type 2 is expressed to high levels in the liver, secretory endometrium and placenta. The type 2 isozyme catalyzes the oxidation of androgens and estrogens equally efficiently. Also, the enzyme possesses 20-HSD activity demonstrated by its ability to convert 20-dihydro-progesterone to progesterone. Testicular 17β-HSD type 3 catalyzes the conversion of androstenedione to testosterone, dehydroepiandrosterone to 5-androstenediol and estrone to estradiol. The 17β-HSD3 gene is mutated in male pseudohermaphrodites with the genetic disease 17β-HSD deficiency.  相似文献   

13.
G L Murdock  J C Warren  F Sweet 《Biochemistry》1988,27(12):4452-4458
Human placental estradiol 17 beta-dehydrogenase (EC 1.1.1.62) was affinity labeled with 17 alpha-estradiol 17-(bromo[2-14C]acetate) (10 microM) or 17 beta-estradiol 17-(bromo[2-14C]acetate) (10 microM). The steroid bromoacetates competitively inhibit the enzyme (against 17 beta-estradiol) with Ki values of 90 microM (17 alpha bromoacetate) and 134 microM (17 beta bromoacetate). Inactivation of the enzyme followed pseudo-first-order kinetics with a t1/2 = 110 min (17 alpha bromoacetate) and t1/2 = 220 min (17 beta bromoacetate). Amino acid analysis of the affinity radioalkylated enzyme samples from the two bromoacetates revealed that N pi-(carboxy[14C]methyl)histidine was the modified amino acid labeled in each case. Digestion with trypsin produced peptides that were isolated by reverse-phase high-performance liquid chromatography and found to contain N pi-(carboxy[14C]methyl)histidine. Both the 17 alpha bromoacetate and also the 17 beta bromoacetate modified the same histidine in the peptide Phe-Tyr-Gln-Tyr-Leu-Ala-His(pi-CM)-Ser-Lys. Previously, the same histidine had been exclusively labeled by estrone 3-(bromoacetate) and shown not to be directly involved in catalytic hydrogen transfer at the D-ring of estradiol. Therefore, this histidine was presumed to proximate the A-ring of the bound steroid substrate. The present results suggest that the 17 alpha bromoacetate and 17 beta bromoacetate D-ring analogues of estradiol react with the same active site histidine residue as estrone 3-(bromoacetate), the A-ring analogue of estrone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
While growth factors and hormones are known to influence aromatase expression in experimental systems, little is know about potential factors influencing peripheral aromatization in postmenopausal women. The fact that peripheral aromatase activity is higher in old compared to young women and the finding of relatively high tissue estradiol (E2) concentrations after the menopause suggests peripheral aromatization could be influenced by estrogen concentration. To test this hypothesis, we determined plasma hormone levels (n = 9) and in vivo aromatization (n = 3) in postmenopausal women suffering from advanced breast cancer before and during treatment (4 weeks) with diethylstilbestrol (DES) 5 mg three times daily. Plasma levels of cortisol (C), corticosteroid-binding globulin (CBG), and sex hormone binding globulin (SHBG) were significantly increased in all patients (P < 0.05 for all). While we found no change in total body aromatization and plasma estrone (E1) levels, estradiol (E2) and estrone sulfate (E1S) were suppressed by a mean of 48.8 and 68.2%, respectively (P = 0.043 and 0.008). Surprisingly, plasma levels of androstenedione (A), testosterone (T), dehydroepiandrosterone (DHEA) and its sulfate (DHEAS) were also suppressed by a mean in the range of 32.1 to 52.6% (P < 0.05 for all androgens). In contrast, no change in plasma progesterone or 17-hydroxyprogesterone was found. Thus, one possible explanation to our findings could be that DES administered in high doses reduces 17,20-lyase activity in the adrenal gland.  相似文献   

15.
Recently, the successful synthesis of radioiodinated 16 alpha-iodo-3,17 beta-estradiol-[125I] [125I]E2 was reported [1]. This new ligand has similar binding characteristics to the estrogen receptor (ER) [2-5] as the currently used tritium labeled estradiol [3H]E2. However, it offers several advantageous features: (a) high specific activity (theoretically 2,000 Ci/mmol) [1]; (b) minor problems with radioactive waste due to its short half life and (c) the possibility of simultaneous determination of ER and progesterone receptors (PgR) by double labeling with [125I]E2 and [3H]R5020 [6, 7]. As we are presently trying to determine ER and PgR in human placental cytosols we were interested in the stability of different labeled estrogens under the conditions of ER-assay. Placental cytosols [8] as well as cytosols of other tissues such as endometrium [9, 10], ovary [11] or mammary carcinomas [12] have been reported to contain significant amounts of 17 beta-hydroxysteroid dehydrogenase (17 beta-HSD) activity. Conversion of labeled estradiol to estrone during incubation for ER-quantification would diminish the amount of labeled estradiol thus leading to errors in ER-concentrations, as estrone has only about 10% of estradiol's binding activity [13].  相似文献   

16.
Human estrogenic 17beta-hydroxysteroid dehydrogenase (17beta-HSD1) plays a crucial role in the last step of the synthesis of estrogens. A detailed kinetic study demonstrated that the enzyme shows about 240 fold higher specificity towards estrone reduction than estradiol oxidation at physiological pH using tri-phosphate cofactors. The kcat/Km values are 96 +/- 10 and 0.4 +/- 0.1 s-1 (microM)-1 respectively for the above two reactions. However, it has been shown that this difference is closely linked to the use of NADPH and NADP cofactors. A binding study using equilibrium dialysis indicated similar KD (equilibrium dissociation constant) of 11 +/- 1 and 4.7 +/- 0.9 microM for estrone and estradiol, respectively. The binding affinity of 17beta-HSD1 to estrone was significantly increased with a KD of 1.6 +/- 0.2 microM in the presence of NADP, the latter used as an analogue of the NADPH. The results of binding studies agree with the steady-state kinetics, which showed that the Km of estrone is 12-fold lower when using NADPH as a cofactor than when using NADH. These results strongly suggest that the cofactor plays a crucial role in the stimulation of the specificity for estrogen reduction.  相似文献   

17.
A protein which binds dehydroepiandrosterone sulfate and estrone sulfate was detected in the cytosolic fraction of female Guinea-pig liver. It is characterized by a molecular mass of 14,400 Da, its affinity for DHEA sulfate (KD = 8.8 microM) and estrone sulfate (KD = 8.5 microM), and its lack of affinity for free steroids such as dehydroepiandrosterone or estrone. It is eluted by gel filtration on Sephadex G-50 simultaneously with the inhibitor of microsomal DHEA sulfatase recently described by some of us. This protein could be implicated in the intracellular transport or in the metabolism of sulfated steroids.  相似文献   

18.
A family of organic anion transporters (OAT) recently identified has important roles for the excretion or reabsorption of endogenous and exogenous compounds, and several new isoforms have been reported in this decade. Although the transepithelial transport properties of organic anions are gradually being understood, many portions of their functional characteristics in functions remain to be elucidated. A recently reported new cDNA encoding a mouse OAT5 (mOAT5) was constructed, using 3'-RACE PCR, with the total RNA isolated from a mouse kidney. When mOAT5 was expressed in Xenopus oocytes, mOAT5 transported estrone sulfate, dehydroepiandrosterone sulfate and ochratoxin A. Estrone sulfate uptake by mOAT5 displayed a time-dependent and sodium-independent manner. The Km values of estrone sulfate and dehydroepiandrosterone sulfate were 2.2 and 3.8 microM, respectively. mOAT5 interacted with chemically heterogeneous steroid or organic sulfates, such as nitrophenyl sulfate, methylumbelliferyl sulfate and estradiol sulfates. In contrast to the sulfate conjugates, mOAT5-mediated estrone sulfate uptake was not inhibited by the steroid or organic glucuronides. The mOAT5 protein having about 85 kDa molecular weight was shown to be mainly localized in the apical membrane of the proximal tubules of the outer medulla. These results suggest an important role of mOAT5 for the excretion or reabsorption of steroid sulfates in the kidney.  相似文献   

19.
Effects of estrogen hormones on lipid peroxidation (LPO) were examined in rat brain homogenates (RBHs), hippocampal HT 22 cells, rat primary neocortical cultures, and human brain homogenates (HBHs). Dose-response curves indicated half-maximal effective concentrations (EC50) of 5.5 and 5.6 mM for iron-induced LPO in RBHs and HT 22 homogenates. Incubation of living rat primary neocortical cultures with iron resulted in an EC50 of 0.5 mM, whereas culture homogenates showed an EC50 of 1.2 mM. Estrogen hormones reduced LPO in all systems: In RBHs, estrone inhibited iron-induced LPO to 74.1 +/- 5.8% of control levels (17beta-estradiol: 71.3 +/- 0.1%) at a concentration of 10 microM. In hippocampal HT 22 cell homogenates, levels of LPO were reduced to 74.8 +/- 5.5% by estrone and to 47.8 +/- 6.2% by 17beta-estradiol. In living neocortical cultures, 17beta-estradiol decreased iron-induced LPO to 79.2 +/- 4.8% and increased the survival of cultured neuronal cells. Of the other steroid compounds tested (corticosterone, progesterone, testosterone), only progesterone decreased LPO in HT 22 cell homogenates. In HBHs, LPO was dose-dependently increased by iron concentrations from 2.7 to 6.0 mM. Incubation with estrogens resulted in a dose-dependent inhibition of LPO to 53.8 +/- 8.6% with 10 microM 17beta-estradiol, whereas estrone failed to affect iron-induced LPO to a significant extent. Nonestrogenic steroids, including hydrocortisol, did not show significant effects on LPO in HBHs.  相似文献   

20.
L A Sheean  R A Meigs 《Steroids》1983,41(2):225-241
Human placental microsomes converted epitestosterone to estradiol-17 alpha at rates of 23-48 pmol/min X mg protein with a Km of 113 microM. Activity was inhibited 70-90% by concentrations of CO, metyrapone, n-octylamine, 7,8-benzoflavone and 7-ethoxycoumarin which had no effect on the aromatization of 4-androstene-3, 17-dione. Conversely, cyanide and azide were more effective inhibitors of the conversion of the latter androgen. A variety of neutral steroids inhibited the aromatization of epitestosterone with 19-norsteroids being particularly effective, but competitive effects could not be demonstrated. Both 17 beta-hydroxy-4-estren-3-one and 16 alpha-hydroxy-4-androstene-3,17-dione caused a mixed inhibition. A number of phenolic steroids were also inhibitory with 16-oxo compounds being particularly effective. Inhibition by estrone was non-competitive (Ki = 16 microM). The aromatization of epitestosterone resembles placental microsomal oxidase activities against estrone and benzo [a]pyrene in its inhibitor specificity and epitestosterone may be the native substrate for an oxidase also active in the metabolism of aromatic xenobiotic chemicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号