首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mediation of tentoxin-induced chlorosis through inhibition of chloroplast coupling factor 1 (CF1) ATPase activity was investigated through an examination of the effects of tentoxin on electrophoretically-separated CF1 ATPases from sensitive and insensitive Nicotiana species. Sensitive species exhibited three major ATPases, only one of which was inhibited at some concentrations of tentoxin. Insensitive Nicotiana species showed the same three "isozymes"upon electrophoresis but none of the isozymes were tentoxin sensitive. CF1 isolated from Zea mays L. cv. Pioneer 3541, which is insensitive to tentoxin in vivo based on lack of chlorosis, exhibited two ATPases, one of which was sensitive to tentoxin. The concentration/activity relationships between tentoxin and ATPase inhibition of the sensitive isozyme did not correlate well with the chlorosis induced at similar levels of tentoxin in vivo. Both Oenothera hookeri Torr. & Gray and the CF1-deficient I iota mutant derived from it are sensitive to tentoxin as determined by loss of chlorophyll and ultrastructural changes typical of the tentoxin syndrome. These results support a mechanism of action different from inhibition of CF1 for tentoxin-induced chlorosis.  相似文献   

2.
The effect of tentoxin on the binding of adenine nucleotides to soluble chloroplast coupling factor (CF1) has been studied and the following results have been obtained: 1. Tentoxin (400 micron) increases the maximum attainable tight binding of ADP to CF1. In the absence of tentoxin, the maximal binding observed by the method employed is about 0.3 nmol ADP/mg protein, whereas in the presence of tentoxin this ranges from 1.5 to 2.0 nmol ADP/mg protein. 2. Tentoxin-induced binding of ADP to CF1 is severely inhibited by divalent cations (50% inhibition at about 2 mM) but only weakly inhibited by monovalent cations (less than 50% inhibition at 100 mM). 3. The binding of ADP to CF1 induced by tentoxin is inhibited by ATP and adenylyl imidodiphosphate but is not inhibited by other nucleotides including AMP, GDP, CDP, IDP, or beta, gamma-methylene ATP. 4. The ADP-CF1 complex induced by tentoxin is quite stable. 75% remains bound to CF1 even after passage of the complex through a gel filtration column. An additional 25% can be removed by incubation in the presence of ADP, and all of the bound ADP can be removed only after incubation in the presence of both tentoxin and ADP. The latter result is interpreted as a tentoxin-induced exchange of bound ADP for medium ADP.  相似文献   

3.
1. The effect of energy transfer inhibitors on energy-dependent exchange of tightly bound adenine nucleotides with washed, broken spinach thylakoids has been studied. Energy transfer inhibitors that inhibit the ATPase activity of soluble chloroplast coupling factor 1 (CF1) (e.g. phloridzin and tentoxin) do not inhibit energy-dependent adenine nucleotide exchange. Energy transfer inhibitors that block proton flux through the hydrophobic protein proton channel (CF0) (e.g. dicyclohexylcarbodiimide and triphenyltin chloride) also block light-dependent adenine nucleotide exchange. 2. Tentoxin, at relatively high concentrations, stimulates an energy-independent exchange of adenosine diphosphate. 3. High concentrations of tentoxin elicit a Ca2+-dependent ATPase activity with soluble CF1, but has no effect on the Ca2+-dependent ATPase activity of membrane-bound CF1. 4. The trypsin-activated, Ca2+-dependent, membrane-bound ATPase is not affected by high concentrations of tentoxin, whereas the dithiothreitol-activated, Mg2+-dependent ATPase is markedly inhibited. 5. The reconstitution of chloroplasts, partially depleted in CF1, with soluble CF1 is correlated with the loss of tentoxin-induced, Ca2+-dependent ATPase activity associated with soluble CF1.  相似文献   

4.
An analysis of interspecific hybrids of Nicotiana spp. in which one of the parents was sensitive to tentoxin showed that this sensitivity was transmitted only through the female parent. Since tentoxin acts by selectively binding to the alpha,beta subunit complex of chloroplast coupling factor 1, the gene(s) specifying either one or both of these subunits is located in the cytoplasm.  相似文献   

5.
Tentoxin, produced by Alternaria alternata (Fr.) Keissl. causes severe variegated chlorosis in germinating seedlings of certain dicotyledonous species. However, it does not impair radicle and hypocotyl elongation or cotyledon expansion. Effects of the toxin on the activity of selected enzymes from both chloroplasts and cytoplasm were determined. Cucumber (Cucumis sativus L.), which is highly sensitive to tentoxin and cabbage (Brassica oleracea L.), which is resistant, were used as test plants. The activities of chloroplastic, but not cytoplasmic, enzymes were decreased by treatment of cucumber cotyledons with tentoxin. Neither group of enzymes was affected by the toxin in cabbage cotyledons. The decreased enzymic activities are probably related to reported inhibition of photophosphorylation by tentoxin.  相似文献   

6.
The interaction of tentoxin [cyclo-(-L-leucyl-N-methyl-(Z)-dehydrophenylalanyl-glycyl-N-methyl-L-alanyl-)] with solubilized lettuce chloroplast coupling factor 1 was characterized by direct binding studies, measurement of the time course of ATPase inhibition, and steady-state enzyme kinetics. Neither substrates, products or Ca2+ competed with the tentoxin binding site, nor did they induce any large change in tentoxin affinity. The inhibition of lettuce chloroplast coupling factor 1 ATPase was found to be the time dependent, and at equilibrium the affinities estimated by equilibrium ultrafiltration and enzyme inhibition were similar (1.8 . 10(8) M-1). The steady-state kinetics best fit an uncompetitive pattern suggesting that the inhibited steps follow an irreversible step occurring after ATP binding.  相似文献   

7.
The early observation of light-dependent Ca-ATPase activity in chloroplast thylakoids [Avron, M. (1962) J. Biol. Chem. 237, 2011-2017] has been reinvestigated. It is demonstrated that in contrast to light-triggered Mg-ATP activity, Ca-ATPase activity is strictly dependent on delta microH+, the transthylakoid membrane electrochemical potential gradient, since (a) there is an absolute requirement for continuous illumination; (b) electron-transport mediators that catalyze proton uptake, like phenazinemethosulphate, methylviologen of ferricyanide, are essential and (c) uncouplers inhibit the activity. The Ca-ATPase activity is essentially unaffected by dithiols, but is inhibited by CF0-CF1 inhibitors including tentoxin, dicyclohexylcarbodiimide and antisera to CF1. Addition of Ca-ATP to thylakoids does not induce delta pH or delta psi (the electrical potential gradient) formation either in the light or following preillumination with dithiols, demonstrating that it is not coupled to proton translocation. It is also demonstrated that Ca-ATP or Ca-ADP does not induce a proton leak through CF0-CF1. It is concluded that the Ca-ATPase activity in chloroplast thylakoid reflects a partial reaction of ATP synthesis catalyzed by CF0-CF1, which is internally uncoupled from proton translocation but is dependent on energization by a transmembrane delta microH+.  相似文献   

8.
Summary The response of Nicotiana tabacum to tentoxin (chlorosis) is inherited with chloroplasts. N. tabacum var. Xanthi, a tentoxin-resistant line, was used to pollinate tentoxin-sensitive N. tabacum line 92, an alloplasmic male-sterile line containing N. undulata plastids. The seeds were mutagenized with nitrosomethylurea and germinated in the presence of tentoxin. Two percent of the seedlings had green sectors in their first true leaves. These plants were grown to maturity under non-selective conditions. Homogeneous tentoxin-resistant lines were obtained in the third generation. DNA analysis indicated, however, that selection for paternal plastids, rather than mutagenesis of maternal ones, had occurred in the tentoxin-resistant progeny. Mitochondria, which were not under selection pressure, were inherited maternally as expected. Inheritance of tentoxin-resistant paternal plastids did not require seed mutagenesis. Normally germinated seedlings that were kept under tentoxin selection consistently produced a low level of resistant green sectors in their first true leaves. Thus, normal, low-frequency transmission of paternal plastids in N. tabacum can be directly revealed by using tentoxin.  相似文献   

9.
10.
Inhibition of chloroplast development by tentoxin   总被引:1,自引:0,他引:1  
Light-dependent chloroplast development in detached pea shoots was measured in terms of chlorophyll synthesis and the synthesis of Fraction 1 protein. Both synthetic processes were inhibited more than 90% by the fungal metabolite, tentoxin (1 or 10 μg/ml). These results place Pisum sativum in the class of tentoxin-sensitive higher plants. Tentoxin, actinomycin D, lincomycin, D-threo-chloramphenicol and carbonyl cyanide m-chlorophenyl-hydrazone (CCCP) were compared in their ability to inhibit RNA and protein synthesis by isolated pea chloroplasts. Energy for the synthetic reactions was supplied either by light or by added ATP. Only CCCP gave the same pattern of inhibition as tentoxin, i.e. inhibition of both RNA and protein synthesis in the light-driven system but no inhibition in the ATP-driven system. It is concluded that chloroplast developmental processes are inhibited by tentoxin through the inhibition of photophosphorylation.  相似文献   

11.
A hybrid ATPase composed of cloned chloroplast ATP synthase beta and gamma subunits (betaC and gammaC) and the cloned alpha subunit from the Rhodospirillum rubrum ATP synthase (alphaR) was assembled using solubilized inclusion bodies and a simple single-step folding procedure. The catalytic properties of the assembled alpha3Rbeta3CgammaC were compared to those of the core alpha3Cbeta3CgammaC complex of the native chloroplast coupling factor 1 (CF1) and to another recently described hybrid enzyme containing R. rubrum alpha and beta subunits and the CF1 gamma subunit (alpha3Rbeta3RgammaC). All three enzymes were similarly stimulated by dithiothreitol and inhibited by copper chloride in response to reduction and oxidation, respectively, of the disulfide bond in the chloroplast gamma subunit. In addition, all three enzymes exhibited the same concentration dependence for inhibition by the CF1 epsilon subunit. Thus the CF1 gamma subunit conferred full redox regulation and normal epsilon binding to the two hybrid enzymes. Only the native CF1 alpha3Cbeta3CgammaC complex was inhibited by tentoxin, confirming the requirement for both CF1 alpha and beta subunits for tentoxin inhibition. However, the alpha3Rbeta3CgammaC complex, like the alpha3Cbeta3CgammaC complex, was stimulated by tentoxin at concentrations in excess of 10 microm. In addition, replacement of the aspartate at position 83 in betaC with leucine resulted in the loss of stimulation in the alpha3Rbeta3CgammaC hybrid. The results indicate that both inhibition and stimulation by tentoxin require a similar structural contribution from the beta subunit, but differ in their requirements for alpha subunit structure.  相似文献   

12.
Medgyesy et al. (1986, Mol. Gen. Genet. 204, 195–198) have described in Nicotiana plumbaginifolia and in an interspecific cross involving N. plumbaginifolia and N. tabacum a procedure for selecting cell lines derived from seedlings carrying paternal chloroplasts by taking advantage of a plastid-encoded mutation which confers resistance to streptomycin. We have extended their demonstration of occasional transmission of chloroplasts through pollen to the case of an intraspecific cross in N. tabacum. The line used as maternal parent, ITB19(sua), displayed a cytoplasmic male sterility due to the presence of a cytoplasm originating from N. suaveolens. The line used as paternal parent, SR1, was fertile and possessed mutant chloroplasts conferring resistance to streptomycin. From cell lines derived from 204 seedlings, three were regenerated into streptomycin-resistant buds. The plants derived from these three clones were male-sterile. Their progeny, after crossing with a wild type tobacco line, XHFD8, was resistant to streptomycin. Tests of resistance of the seedlings to tentoxin and restriction analyses of the chloroplast DNA indicated that two clones still had the maternal chloroplasts and were thus probably new streptomycin-resistant mutants, whereas the third one had acquired the chloroplasts of the paternal parent, but had retained the mitochondria of the maternal parent.Abbreviations cp-DNA chloroplast DNA - mt-DNA mitochondrial DNA - Np Nicotiana plumbaginifolia - Nt Nicotiana tabacum  相似文献   

13.
In contrast to the homologous bacterial and mitochondrial enzymes the chloroplast F(1)-ATPase (CF(1)) is strongly affected by the phytopathogenic inhibitor tentoxin. Based on structural information obtained from crystals of a CF(1)-tentoxin co-complex (Groth, G. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 3464-3468) we have replaced residues betaSer(66) and alphaArg(132) in the alpha(3)beta(3)gamma subcomplex of the thermophilic F(1)-ATPase from Bacillus PS3 by the corresponding residues of the chloroplast ATPase to confer tentoxin sensitivity to the thermophilic enzyme. The mutation alphaArg(132) --> Pro, proposed to relieve steric constraints on tentoxin binding, did not have any significant effect. However, mutation betaSer(66) --> Ala, predicted to provide a crucial hydrogen bond with the inhibitor, resulted in tentoxin inhibition of ATP hydrolysis comparable with the situation found with the chloroplast enzyme.  相似文献   

14.
Trace amounts ( approximately 5%) of the chloroplast alpha subunit were found to be absolutely required for effective restoration of catalytic function to LiCl-treated chromatophores of Rhodospirillum rubrum with the chloroplast beta subunit (Avital, S., and Gromet-Elhanan, Z. (1991) J. Biol. Chem. 266, 7067-7072). To clarify the role of the alpha subunit in the rebinding of beta, restoration of catalytic function, and conferral of sensitivity to the chloroplast-specific inhibitor tentoxin, LiCl-treated chromatophores were analyzed by immunoblotting before and after reconstitution with mixtures of R. rubrum and chloroplast alpha and beta subunits. The treated chromatophores were found to have lost, in addition to most of their beta subunits, approximately a third of the alpha subunits, and restoration of catalytic activity required rebinding of both subunits. The hybrid reconstituted with the R. rubrum alpha and chloroplast beta subunits was active in ATP synthesis as well as hydrolysis, and both activities were completely resistant to tentoxin. In contrast, a hybrid reconstituted with both chloroplast alpha and beta subunits restored only a MgATPase activity, which was fully inhibited by tentoxin. These results indicate that all three copies of the R. rubrum alpha subunit are required for proton-coupled ATP synthesis, whereas for conferral of tentoxin sensitivity at least one copy of the chloroplast alpha subunit is required together with the chloroplast beta subunit. The hybrid system was further used to examine the effects of amino acid substitution at position 83 of the beta subunit on sensitivity to tentoxin.  相似文献   

15.
Tentoxin is a cyclic tetrapeptide, produced by the fungus Alternariaalternata, that induces chiorosis in germinating seedlings ofsome angiosperms. Since the most pronounced chiorotic effectof tentoxin is at the initial stages of germination most studieshave evaluated the effects of tentoxin on cotyledons. In thispreliminary work a unique biological system was establishedfor the study of the mechanism of tentoxin induced chiorosisin developing citrus seedlings. This system was used to comparethe effects of tentoxin on the in vitro germination of intactversus decotyle donized embryos. It is demonstrated here thatthe chlorotic effect of tentoxin is reversible and that ten-toxin blocks the ability of decotyledonized embryos to utilizenutrients from the growth medium and, there fore, to compensatefor the lack of cotyledons. The citrus system offers a uniqueway to study the relation between the effect of tentoxin onthe activity of choloplast ATPase and the induction of chlorosis. Key words: Tentoxin, citrus, chiorosis  相似文献   

16.
In plants the chloroplast thylakoid membrane is the site of light-dependent photosynthetic reactions coupled to ATP synthesis. The ability of the plant cell to build and alter this membrane system is essential for efficient photosynthesis. A nucleotide translocator homologous to the bovine mitochondrial ADP/ATP carrier (AAC) was previously found in spinach thylakoids. Here we have identified and characterized a thylakoid ATP/ADP carrier (TAAC) from Arabidopsis.(i) Sequence homology with the bovine AAC and the prediction of chloroplast transit peptides indicated a putative carrier encoded by the At5g01500 gene, as a TAAC. (ii) Transiently expressed TAAC-green fluorescent protein fusion construct was targeted to the chloroplast. Western blotting using a peptide-specific antibody together with immunogold electron microscopy revealed a major location of TAAC in the thylakoid membrane. Previous proteomic analyses identified this protein in chloroplast envelope preparations. (iii) Recombinant TAAC protein specifically imports ATP in exchange for ADP across the cytoplasmic membrane of Escherichia coli. Studies on isolated thylakoids from Arabidopsis confirmed these observations. (iv) The lack of TAAC in an Arabidopsis T-DNA insertion mutant caused a 30-40% reduction in the thylakoid ATP transport and metabolism. (v) TAAC is readily expressed in dark-grown Arabidopsis seedlings, and its level remains stable throughout the greening process. Its expression is highest in developing green tissues and in leaves undergoing senescence or abiotic stress. We propose that the TAAC protein supplies ATP for energy-dependent reactions during thylakoid biogenesis and turnover in plants.  相似文献   

17.
The F1 part of the chloroplast H+ adenosine triphosphate (ATP)-synthase (CF1) strongly interacts with tentoxin, a natural fungous cyclic tetrapeptide known to inhibit the chloroplast enzyme and not the mammalian mitochondrial enzyme. Whereas the synthesis or the hydrolysis of ATP requires the stepwise rotation of the protein rotor gamma within the (alphabeta)3 crown, only one molecule of tentoxin is needed to fully inhibit the complex. With the help of an original homology modeling technique, based on robust distance geometry protocols, we built a tridimensional model of the alpha3beta3gamma CF1) subcomplex (3200 esidues), in which we introduced three different nucleotide occupancies to check their possible influence on the tentoxin binding site. Simultaneous comparison of three available high-resolution X-ray structures of F1, performed with a local structural alignment search tool, led to characterizing common structural blocks and the distorsions experienced by the complex during the catalytic turnover. The common structural blocks were used as a starting point of the spinach CF1 structure rebuilding. Finally, tentoxin was docked into its putative binding site of the reconstructed structure. The docking method was initially validated in the mitochondrial enzyme by its ability to relocate nucleotides into their original position in the crystal. Tentoxin binding was found possible to the two alpha/beta interfaces associated with the empty and adenosine diphosphate (ADP)-loaded catalytic sites, but not to the one associated with the ATP-loaded site. These results suggest a mechanism of CF1 inhibition by one molecule of tentoxin, by the impossibility of the alpha/beta interface bearing tentoxin to pass through the ATP-loaded state.  相似文献   

18.
In contrast to everted mitochondrial inner membrane vesicles and eubacterial plasma membrane vesicles, the ATPase activity of chloroplast ATP synthase in thylakoid membranes is extremely low. Several treatments of thylakoids that unmask ATPase activity are known. Illumination of thylakoids that contain reduced ATP synthase (reduced thylakoids) promotes the hydrolysis of ATP in the dark. Incubation of thylakoids with trypsin can also elicit higher rates of ATPase activity. In this paper the properties of the ATPase activity of the ATP synthase in thylakoids treated with trypsin are compared with those of the ATPase activity in reduced thylakoids. The trypsin-treated membranes have significant ATPase activity in the presence of Ca2+, whereas the Ca2+-ATPase activity of reduced thylakoids is very low. The Mg2+-ATPase activity of the trypsinized thylakoids was only partially inhibited by the uncouplers, at concentrations that fully inhibit the ATPase activity of reduced membranes. Incubation of reduced thylakoids with ADP in Tris buffer prior to assay abolishes Mg2+-ATPase activity. The Mg2+-ATPase activity of trypsin-treated thylakoids was unaffected by incubation with ADP. Trypsin-treated membranes can make ATP at rates that are 75–80% of those of untreated thylakoids. The Mg2+-ATPase activity of trypsin-treated thylakoids is coupled to inward proton translocation and 10 mM sulfite stimulates both proton uptake and ATP hydrolysis. It is concluded that cleavage of the γ subunit of the ATP synthase by trypsin prevents inhibition of ATPase activity by the ε subunit, but only partially overcomes inhibition by Mg2+ and ADP during assay.  相似文献   

19.
Previous studies in our laboratory have shown that tentoxin prevents the incorporation of polyphenol oxidase (PPO), a nuclearly-coded protein, into the chloroplasts of sensitive species. In this study, we show, by comparison of electrophoretically separated isozymes, that ferredoxin-NADP+ reductase (FNR) is nuclearly coded in Nicotiana. Electrophoresis of FNR isozymes from tentoxin treated seedlings of a sensitive and a resistant species demonstrated that, unlike PPO, ferredoxin-NADP+ reductase was unaffected by tentoxin treatment. These data indicate that tentoxin selectively inhibits transport of cytoplasmically synthesized proteins into the chloroplast, and does not produce a generalized disruption of cellular integration.This research was supported, in part, by funding under cooperative agreement number 58-7B30-3-548, and is published with the approval of the Director of Arkansas Agr. Exp. Stn. Mention of a trademark, proprietary product, or vendor does not constitute a guarantee or warranty of the product by the US Dep. Agric. or cooperating agencies and does not imply its approval to the exclusion of other products or vendors that may also be suitable.  相似文献   

20.
The interaction of tentoxin [cyclo(-l-leucyl-N-methyl-(Z)-dehydrophenyl-analyl-glycyl-N-methyl-l-alanyl-)] with solubilized lettuce chloroplast coupling factor 1 was characterized by direct binding studies, measurement of the time course of ATPase inhibition, and steady-state enzyme kinetics. Neither substrates, products or Ca2+ competed with the tentoxin binding site, nor did they induce any large change in tentoxin affinity. The inhibition of lettuce chloroplast coupling factor 1 ATPase was found to be the time dependent, and at equilibrium the affinities estimated by equilibrium ultrafiltration and enzyme inhibition were similar (1.8 · 108M?1). The steady-state kinetics best fit an uncompetitive pattern suggesting that the inhibited steps follow an irreversible step occurring after ATP binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号