首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
开花式样对传粉者行为及花粉散布的影响   总被引:8,自引:0,他引:8  
唐璐璐  韩冰 《生物多样性》2007,15(6):680-686
理解植物花的特征可以从单花特征和群体特征两个层次入手。开花式样是植物的花在群体上的特征体现, 通过在开花数目、开花类型以及花的排列上的变化, 不同的开花式样对传粉者具有不同的吸引力, 影响昆虫在植株上的活动, 使花粉运动的方向发生相应变化, 从而影响着植物最终的交配结果。此外开花式样随环境改变也会发生一些变化。本文介绍了开花式样研究的进展, 对开花数目、开花类型以及花的排列等3个方面的已有研究进行了分别阐述, 并提出开花式样研究应更多地考虑影响传粉的各种因素。  相似文献   

2.
Pollination by nectarivorous birds is predicted to result in different patterns of pollen dispersal and plant mating compared to pollination by insects. We tested the prediction that paternal genetic diversity, outcrossing rate and realized pollen dispersal will be reduced when the primary pollinator group is excluded from bird‐pollinated plants. Pollinator exclusion experiments in conjunction with paternity analysis of progeny were applied to Eucalyptus caesia Benth. (Myrtaceae), a predominantly honeyeater‐pollinated tree that is visited by native insects and the introduced Apis mellifera (Apidae). Microsatellite genotyping at 14 loci of all adult E. caesia at two populations (n = 580 and 315), followed by paternity analysis of 705 progeny, revealed contrasting results between populations. Honeyeater exclusion did not significantly impact pollen dispersal or plant mating at Mount Caroline. In contrast, at the Chiddarcooping site, the exclusion of honeyeaters led to lower outcrossing rates, a threefold reduction in the average number of sires per fruit, a decrease in intermediate‐distance mating and an increase in near‐neighbour mating. The results from Chiddarcooping suggest that bird pollination may increase paternal genetic diversity, potentially leading to higher fitness of progeny and favouring the evolution of this strategy. However, further experimentation involving additional trees and study sites is required to test this hypothesis. Alternatively, insects may be effective pollinators in some populations of bird‐adapted plants, but ineffective in others.  相似文献   

3.
Many alpine plants are predominantly outcrossing, thus plant reproductive success is highly dependent on effectiveness of pollinators. How pollinators transfer pollen from one flower to another is of great interest in understanding the genetic structure in plant populations. We studied (1) the role and effectiveness of insect visitors for pollination, and (2) their contribution as pollen vectors for gene dispersal in a Rhododendron ferrugineum population. Various insect visitors were recorded, including Hymenoptera, Diptera, Coleoptera, and Lepidoptera. The most frequent and effective insects were honey bees and bumblebees. Muscid flies were considered as important pollinators, particularly due to their relatively high visitation rate. Syrphid flies, Formicidae, and Coleoptera were ineffective in transporting pollen, while the effectiveness of Lepidoptera and Empididae was negligible. A fluorescence labelling experiment revealed that pollen dispersal was restricted (0 - 2 m) in a dense R. ferrugineum stand and decreased in a leptokurtic fashion. This might lead to geitonogamous self-pollination that could explain the close relationship between individuals found in genetic studies of R. ferrugineum. However, some pollen grains may travel 40 - 45 m, which implies the occurrence of cross-pollination through the foraging activities of bumblebees and honey bees.  相似文献   

4.
Volumetric data on airborne pollen have been gathered for two consecutive years at a neotropical location (Caracas). Among the 65 taxa which were identified, pollen from aCupressus species (introduced) and from aCecropia species (indigenous) were dominant. Less numerous but also abundant (daily averages ≥5 grains/m3 air) were pollen from Gramineae, Urticaceae,Alcalypha, Pinus, Piperaceae andMimosa. Pollen grains were recorded daily throughout the year. They increased in numbers during April–May and again during November–December. The first peak was contributed mainly by indigenous species, the second peak mainly by introduced species.  相似文献   

5.
Abstract Estimating the frequency of long-distance pollination is important in cultivated species, particularly to assess the risk of gene transfer following the release of genetically modified crops. For this purpose, we estimated the diversity and origin of fertilizing pollen in a 10 x 10 km French oilseed rape production area. First, the cultivar grown in each field was identified through surveys to farmers and using microsatellite markers. Examination of the seed set in fields indicated high rates of seed contamination (8.7%) and pollination from other sources (5%). Then, male-sterile plants were scattered over the study area and their seed genotyped using the same markers. Most pollination was local: 65% of the seeds had a compatible sire in the closest field, i.e. at 50 or 300 m depending on site, but the nearest compatible field was found more than 1000 m away for 13% of the seeds. To assess the diversity of fertilizing pollen, each seed was assigned to the nearest putative siring cultivar. The observed diversity of pollen was then compared to that predicted by simulations using three empirical dispersal models with increasing proportion of long-distance pollination. The diversity was sensitive to the dispersal kernel used in the simulations, fatter-tailed functions predicting higher diversities. The dispersal kernel that was more consistent with our data predicted more long-distance dispersal than the exponential function.  相似文献   

6.
Cytophysiology of pollen presentation and dispersal   总被引:5,自引:2,他引:3  
Ettore Pacini  Michael Hesse   《Flora》2004,199(4):273-285
  相似文献   

7.
水稻花粉扩散的模拟研究   总被引:3,自引:0,他引:3  
胡凝  陈万隆  刘寿东  罗卫红  赵莉莉  高蓓 《生态学报》2010,30(14):3665-3671
水稻花粉扩散可导致基因飘流问题,尤其是转基因水稻,其外源基因的扩散可能会引发一系列的环境安全问题。为了模拟花粉扩散过程,2007年和2009年分别在南京(32°01′N,118°52′E)和溧水(31°35′N,119°11′E),以两优培九为材料,各组织了一次田间试验。通过空气中的花粉扩散浓度的观测和微气象塔梯度环境要素的采集,采用高斯烟羽模型为基础,利用最小二乘法,模拟了水稻花粉的扩散浓度,并利用独立试验数据验证了模型效果。结果表明:花粉释放集中在始花期后第1天到第5天的09:00-11:00,且花粉释放量与开花量显著相关(r=0.880**)。花粉浓度的模拟值和实测值变化趋势一致,其均方根误差和相对误差分别为0.509粒/(m2.d)和3.47%。该花粉扩散模型可以正确反映花粉扩散浓度的分布特征。但在花粉浓度的预测精度上,尤其是预测花粉远距离传播时,仍需要改进。  相似文献   

8.
Abstract

Selected examples of pollen and seed dispersal in Mediterranean plants are described. The aspects of pollination considered are: comparison between cleistogamous and chasmogamous forms in the same species; differences in attractants and rewards; duration of pollen viability according to pollination syndrome. The aspects of seed dispersal considered are: presence or absence of specialized structures for dispersal; examples of active, passive and induced dispersal; animals involved in seed dispersal and their reward; type and functions of elaiosomes.  相似文献   

9.
10.
Pollen dispersal was investigated in six populations of Calothamnus quadrifidus, a bird-pollinated shrub in the fragmented agricultural region of southern Western Australia. Paternity analysis using six microsatellite loci identified a pollen source within populations for 67% of seedlings, and the remainder were assumed to have arisen from pollen sources outside the populations. Outcrossing was variable, ranging from 5% to 82%, and long-distance pollen dispersal was observed in all populations with up to 43% of pollen sourced from outside the populations over distances of up to 5 km. This extensive pollen immigration was positively associated with population size but not isolation. Comparison of two populations of similar size but different density showed greater internal pollination and less selfing in the denser population, suggesting an influence of density on pollinator behaviour. The study revealed extensive long-distance pollen dispersal for C. quadrifidus within this fragmented agricultural landscape and highlighted the interaction between reserve populations and isolated road verge remnants in maintaining genetic connectivity at the landscape scale.  相似文献   

11.
Summary In order to find whether or not a pattern exist in both pollen concentration and viability along altitudinal transects, samples were collected volumetrically (VPPS) each 25 m, from 500 to 825 m, on Mount Sutton (45°04N; 72°32W) (970 m). Both minimum concentration and minimum viability were found at 725 m. Airborne pollen viability was species dependent, while airborne concentrations were not specific. Sampling height influence was also investigated volumetrically (BPS), by comparing paired samples at ground and 10 m levels. Again, pollen concentration pattern was found quite stable, while viability was found to be more height influenced, particularly at 725 m. The 725 m hinge altitude is located just above the June Mean Cloud Base altitude (657 m).  相似文献   

12.
Pollination and seed dispersal determine the spatial pattern of gene flow in plant populations and, for those species relying on pollinators and frugivores as dispersal vectors, animal activity plays a key role in determining this spatial pattern. For these plant species, reported dispersal patterns are dominated by short-distance movements with a significant amount of immigration. However, the contribution of seed and pollen to the overall contemporary gene immigration is still poorly documented for most plant populations. In this study we investigated pollination and seed dispersal at two spatial scales in a local population of Prunus mahaleb (L.), a species pollinated by insects and dispersed by frugivorous vertebrates. First, we dissected the relative contribution of pollen and seed dispersal to gene immigration from other parts of the metapopulation. We found high levels of gene immigration (18.50%), due to frequent long distance seed dispersal events. Second, we assessed the distance and directionality for pollen and seed dispersal events within the local population. Pollen and seed movement patterns were non-random, with skewed distance distributions: pollen tended moved up to 548 m along an axis approaching the N-S direction, and seeds were dispersed up to 990 m, frequently along the SW and SE axes. Animal-mediated dispersal contributed significantly towards gene immigration into the local population and had a markedly nonrandom pattern within the local population. Our data suggest that animals can impose distinct spatial signatures in contemporary gene flow, with the potential to induce significant genetic structure at a local level.  相似文献   

13.
Summary The widespread occurrence of nonorchid, heterospecific pollen grains on the stigmatic surfaces of a range of nectariferous and nectarless European orchids (Dactylorhiza. Orchis, Goodyera, andGymnadenia species) is reported for the first time, and the impact of heterospecific pollination on orchid reproductive success is experimentally investigated. There are three main components of stigmatic contamination by heterospecific pollen: the frequency of contamination, the diversity of foreign species present on the stigma, and the amount of pollen deposited. Six out of seven of the species examined have greater than 85% of stigmas contaminated with wind and insect-dispersed pollen. From one to nine insect-dispersed foreign pollen species are present per stigma, including pollen of members of the families Apiaceae, Asteraceae, Caryohpyllaceae, Ericaceae, and Primulaceae. Average loads per stigma vary from 13 to 176 grains, with individual stigma loads ranging from one to 909. Whether or not the orchid provides nectar has a major impact on these three components. Nectarless orchids have the greatest frequencies of contamination, diversity of species, and average load per stigma. Insect-dispersed pollen is deposited both by pollinators and visitors but, in spite of low levels of pollination, nectarless orchids still exhibit higher frequencies of heterospecific pollen contamination. The effect of the presence of heterospecific pollen on the reproductive success of orchids is tested in this study for the first time. Average-to-high, naturally occurring loads of heterospecific pollen derived from a mixture ofArmeria maritima,Caltha palustris,Cochlearia officinalis,Cytisus scoparius, andPrimula vulgaris and consisting of 50–250 grains per load are placed onto stigmas ofDactylorhiza purpurella which are subsequently self-pollinated with half of a pollinium. All pollinations produce capsules indicating that heterospecific pollen does not affect fruit set. Although experimental and control fruits are similar in size, they differ in total seed weight and composition. Total seed weight is reduced and the proportion of seeds with normal embryos decreased while the proportion of unfertilised ovules increased following pollination with heterospecific pollen, indicating a detrimental effect on fertilisation. Lower reproductive success caused by fertilisation failure is likely to be most severe in nectarless species because of their generally higher levels of contaminated stigmas. As nectarless orchids are known to have lower fruit set compared with nectariferous ones, this finding suggests that the reproductive success of nectarless orchids may be even lower than previously realised.Abbreviations RS reproductive success  相似文献   

14.
Pollen dispersal was characterized within a population of the narrowly endemic perennial herb, Centaurea corymbosa, using exclusion-based and likelihood-based paternity analyses carried out on microsatellite data. Data were used to fit a model of pollen dispersal and to estimate the rates of pollen flow and mutation/genotyping error, by developing a new method. Selfing was rare (1.6%). Pollen dispersed isotropically around each flowering plant following a leptokurtic distribution, with 50% of mating pairs separated by less than 11 m, but 22% by more than 40 m. Estimates of pollen flow lacked precision (0-25%), partially because mutations and/or genotyping errors (0.03-1%) could also explain the occurrence of offspring without a compatible candidate father. However, the pollen pool that fertilized these offspring was little differentiated from the adults of the population whereas strongly differentiated from the other populations, suggesting that pollen flow rate among populations was low. Our results suggest that pollen dispersal is too extended to allow differentiation by local adaptation within a population. However, among populations, gene flow might be low enough for such processes to occur.  相似文献   

15.
Many of the diverse animals that consume floral rewards act as efficient pollinators; however, others 'steal' rewards without 'paying' for them by pollinating. In contrast to the extensive studies of the ecological and evolutionary consequences of nectar theft, pollen theft and its implications remain largely neglected, even though it affects plant reproduction more directly. Here we review existing studies of pollen theft and find that: (1) most pollen thieves pollinate other plant species, suggesting that theft generally arises from a mismatch between the flower and thief that precludes pollen deposition, (2) bees are the most commonly documented pollen thieves, and (3) the floral traits that typically facilitate pollen theft involve either spatial or temporal separation of sex function within flowers (herkogamy and dichogamy, respectively). Given that herkogamy and dichogamy occur commonly and that bees are globally the most important floral visitors, pollen theft is likely a greatly under-appreciated component of floral ecology and influence on floral evolution. We identify the mechanisms by which pollen theft can affect plant fitness, and review the evidence for theft-induced ecological effects, including pollen limitation. We then explore the consequences of pollen theft for the evolution of floral traits and sexual systems, and conclude by identifying key directions for future research.  相似文献   

16.
The objective of this study was to evaluate pollen dispersal inBrassica napus (oilseed rape). The selectable marker, used to follow pollen movement, was a dominant transgene (bar) conferring resistance to the herbicide glufosinate-ammonium. Transgenic and non-transgenic plants of the cultivar Westar were planted in a 1.1 ha field trial, with the transgenic plants in a 9 m diameter circle at the centre, surrounded by non-transgenic plants to a distance of at least 47 m in all directions. A 1 m circle of non-transgenic plants was sown in the centre of the transgenic area to allow estimation of the level of pollen dispersal when plants were in close contact. Honeybee hives were placed at the trial site to optimize the opportunity for cross-pollination. During the flowering period, regular observations were made of the number of plants flowering and the number and type of insects present in 60 1 m2 areas. These areas were located uniformly around the plot at distances of 1, 3, 6, 12, 24, 36 and 47 m from the edge of the 9 m circle of transgenic plants. Seed samples were harvested from each of the 7 distances so that approximately 20% of the circumference of the plot was sampled at each distance. The centre non-transgenic circle was also sampled. Plants were grown from the seed samples and sprayed with glufosinate to estimate the frequency of pollen dispersal at each distance. In order to screen enough samples to detect low frequency cross-pollination events, seed samples were tested in the greenhouse and on a larger scale in the field. Results were confirmed by testing progeny for glufosinate resistance and by Southern blot analysis. The estimated percentage of pollen dispersal in the non-transgenic centre circle was 4.8%. The frequency was estimated to be 1.5% at a distance of 1 m and 0.4% at 3 m. The frequency decreased sharply to 0.02% at 12 m and was only 0.00033% at 47 m. No obvious directional effects were detected that could be ascribed to wind or insect activity.  相似文献   

17.
This paper presents atmospheric pollen concentrations of fifteen entomophilous trees of Eastern India. The period of anthesis and anther dehiscence varied from morning to evening. Insects and other flower visitors were found to accelerate the mechanism of pollen dispersal. The highest pollen concentration was for 267/m3 in Aegle marmelos followed in decreasing order by Eucalyptus globosus (207/m3), Cassia siamea (186/m3), C. fistula (180/m3), Delonix regia (171/m3), Butea monosperma (159/m3), Bombax ceiba (156/m3), Tectona grandis (144/m3), Terminalia arjuna (138/m3), Moringa oleifera (126/m3), Anthocephalus chinensis (114/m3), Syzygium cumini (96/m3), Dillenia indica (30/m3), Syzygium jambos (27/m3), and Kleinhovia hospita (2/m3).  相似文献   

18.

Premise

Animal pollinators play an important role in pollen dispersal. Here, we assessed differences in pollen and seed dispersal and the role of pollinator functional groups with different foraging behaviors in generating patterns of genetic diversity over similar geographic ranges for two closely related taxa. We focused on two members of Oenothera section Calylophus (Onagraceae) that co-occur on gypsum outcrops throughout the northern Chihuahuan Desert but differ in floral phenotype and primary pollinator: Oenothera gayleana (bee) and O. hartwegii subsp. filifolia (hawkmoth).

Methods

We measured breeding system and floral traits and studied gene flow and population differentiation at the local (<13 km; four populations) and landscape (60–440 km; five populations) scales using 10–11 nuclear (pollen dispersal) and three plastid (seed dispersal) microsatellite markers.

Results

Both taxa were self-incompatible and floral traits were consistent with expectations for different pollinators. Seed and pollen dispersal patterns were distinctly different for both species. We found no evidence of genetic structure at the local scale but did at the landscape scale; O. gayleana showed greater differentiation and significant isolation by distance than in O. hartwegii subsp. filifolia. The plastid data were consistent with gravity dispersal of seeds and suggest that pollen dispersal is the principal driver of genetic structure in both species.

Conclusions

We demonstrated that pollinator functional groups can impact genetic differentiation in different and predictable ways. Hawkmoths, with larger foraging distances, can maintain gene flow across greater spatial scales than bees.
  相似文献   

19.
The effective use of prescribed fire in biodiversity conservation is currently inhibited by a limited understanding of fire effects on ecosystem processes such as pollination. Orchids inhabiting fire‐prone landscapes are likely to be particularly sensitive because they often exhibit highly specialized pollination systems and provide no reward to pollinators, making them dependent on co‐flowering heterospecifics to attract and support pollinators. We investigated the hypothesis that fire‐driven changes in the local abundance of rewarding heterospecific flowers influence pollination in two rewardless Australian orchid species, Diuris maculata sensu lato and Caladenia tentaculata. Diuris maculata s.l. is thought to achieve pollination by mimicking papilionoid Fabaceae flowers. Caladenia tentaculata attracts male thynnine wasps through sexual deceit, and these wasps forage on the open‐access flowers of other taxa. We used a space‐for‐time substitution design with sites in different stages of post‐fire succession where we recorded capsule set in D. maculata s.l., pollinator visitation to C. tentaculata, the floral abundance of rewarding heterospecifics and abiotic conditions. Many rewarding taxa responded to fire age, but there was only weak evidence that capsule set in D. maculata s.l. was positively related to the local floral abundance of rewarding species. There was evidence of an overriding effect of rainfall on capsule set that may have obscured effects of the floral community. Visitation to C. tentaculata was not positively associated with any rewarding heterospecifics, and was negatively associated with rewarding Burchardia umbellata. Our preliminary findings highlight the need to account for multiple factors when trying to detect fire effects on pollination.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号