首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metabolic rate, heart rate, lifespan, and many other physiological properties vary with body mass in systematic and interrelated ways. Present empirical data suggest that these scaling relationships take the form of power laws with exponents that are simple multiples of one quarter. A compelling explanation of this observation was put forward a decade ago by West, Brown, and Enquist (WBE). Their framework elucidates the link between metabolic rate and body mass by focusing on the dynamics and structure of resource distribution networks-the cardiovascular system in the case of mammals. Within this framework the WBE model is based on eight assumptions from which it derives the well-known observed scaling exponent of 3/4. In this paper we clarify that this result only holds in the limit of infinite network size (body mass) and that the actual exponent predicted by the model depends on the sizes of the organisms being studied. Failure to clarify and to explore the nature of this approximation has led to debates about the WBE model that were at cross purposes. We compute analytical expressions for the finite-size corrections to the 3/4 exponent, resulting in a spectrum of scaling exponents as a function of absolute network size. When accounting for these corrections over a size range spanning the eight orders of magnitude observed in mammals, the WBE model predicts a scaling exponent of 0.81, seemingly at odds with data. We then proceed to study the sensitivity of the scaling exponent with respect to variations in several assumptions that underlie the WBE model, always in the context of finite-size corrections. Here too, the trends we derive from the model seem at odds with trends detectable in empirical data. Our work illustrates the utility of the WBE framework in reasoning about allometric scaling, while at the same time suggesting that the current canonical model may need amendments to bring its predictions fully in line with available datasets.  相似文献   

2.
异速生长模型研究概述   总被引:2,自引:0,他引:2  
最近,关于异速生长模型的讨论再次成为焦点,讨论热点为异速生长指数的取值及其理论解释.本文综述了WBE 97、BMR(99)模型的相关研究,重点介绍了MGL模型及由此模型得到的结果:个体整体的新陈代谢率与个体的质量没有明显依赖关系,其标度指数不是一个固定的值,而是一个区间[2/3,1].考虑的视角从个体整体的新陈代谢率转到单位质量的新陈代谢率,通过对不同物种、不同环境的单位质量新陈代谢率的研究,发现对大多数物种,其值落在一个具有普适性的上、下界的区间内;认为存在单位质量的新陈代谢率最小值确定了个体的大小,并建立基于该最小值的描述个体大小与温度关系的数学模型,该模型得到实验数据验证.  相似文献   

3.
Lack of Evidence for 3/4 Scaling of Metabolism in Terrestrial Plants   总被引:6,自引:0,他引:6  
Scaling, as the translation of information across spatial, temporal, and organizational scales, is essential to predictions and understanding in all sciences and has become a central issue in ecology. A large body of theoretical and empirical evidence concerning allometric scaling in terrestrial individual plants and plant communities has been constructed around the fractal volume-filling theory of West, Brown, and Enquist (the WBE model). One of the most thought-provoking findings has been that the metabolic rates of plants, like those of animals, scale with their size as a 3/4 power law. The earliest, single most-important study cited in support of the application of the WBE model to terrestrial plants claims that whole-plant resource use in terrestrial plants scales as the 3/4 power of total mass, as predicted by the WBE model. However, in the present study we show that empirical data actually do not support such a claim. More recent studies cited as evidence for 3/4 scaling also suffer from several statistical and data-related problems. Using a forest biomass dataset including 1 266 plots of 17 main forest types across China, we explored the scaling exponents between tree productivity and tree mass and found no universal value across forest stands. We conclude that there is not sufficient evidence to support the existence of a single constant scaling exponent for the metabolism-biomass relationship for terrestrial plants.  相似文献   

4.
Scaling, as the translation of information across spatial, temporal, and organizational scales, is essential to predictions and understanding in all sciences and has become a central issue in ecology. A large body of theoretical and empirical evidence concerning allometric scaling in terrestrial individual plants and plant communities has been constructed around the fractal volume-filling theory of West, Brown, and Enquist (the WBE model). One of the most thought-provoking findings has been that the metabolic rates of plants, like those of animals, scale with their size as a 3/4 power law. The earliest, single most-important study cited in support of the application of the WBE model to terrestrial plants claims that whole-plant resource use in terrestrial plants scales as the 3/4 power of total mass, as predicted by the WBE model.However, in the present study we show that empirical data actually do not support such a claim. More recent studies cited as evidence for 3/4 scaling also suffer from several statistical and data-related problems. Using a forest biomass dataset including 1 266 plots of 17 main forest types across China, we explored the scaling exponents between tree productivity and tree mass and found no universal value across forest stands. We conclude that there is not sufficient evidence to support the existence of a single constant scaling exponent for the metabolism-biomass relationship for terrestrial plants.  相似文献   

5.
The WBE model was used to predict intraspecific scaling relationships among mean branch, needle, stem, root, and above-ground masses across eight stands of Pinus massoniana to test whether the scaling exponent was (1) dependent on site and (2) in accordance with WBE theory. The results showed that mean stem and root masses as well as mean above-ground and root masses scaled in a near-isometric manner across sites, except at two sites, which exhibited an exponent slightly less than unity. Mean needle mass scaled as 3/4 power of mean stem mass, except at one site, which exhibited an exponent slightly higher than 3/4. Mean branch mass scaled isometrically with mean stem mass at each site. These results supported the WBE theory. However, mean branch mass across sites scaled neither as 3/4 nor 1 power of mean stem mass, indicating that the scaling relationship predicted by WBE theory for these two components did not hold in P. massoniana stands.  相似文献   

6.
West、Brown和Enquist提出的植物分形网络模型(简称WBE模型)认为: 植物的分支指数(1/a, 1/b)决定植物的代谢指数, 当分支指数1/a、1/b分别为理论值2.0、3.0时, 代谢速率与个体大小的3/4次幂成正比, 但是恒定的3/4代谢指数并不能全面地反映植物的代谢情况。基于分支指数的协同变化, Price、Enquist和Savage对WBE模型进行扩展, 提出植物分支参数协同变化模型(简称PES模型)。该文借助于PES模型分析了7种木本植物的分支指数和代谢指数。结果表明: 物种间叶面积与叶生物量呈异速生长关系, 基于叶面积得到的分支指数1/a和代谢指数θ在物种间无显著差异, 基于叶生物量得到的分支指数1/a、1/b和代谢指数θ在物种间均存在显著差异, 但基于叶面积和叶生物量分别拟合出的整体分支指数1/a、1/b和代谢指数θ与理论值均无显著差异, 且用叶面积作为代谢速率的替代指标比用叶生物量分析得出的代谢指数与理论值更接近。今后研究应当关注植物叶面积与叶生物量的异速生长关系对植物代谢速率及相关功能特性的影响。  相似文献   

7.
《植物生态学报》2014,38(6):599
West、Brown和Enquist提出的植物分形网络模型(简称WBE模型)认为: 植物的分支指数(1/a, 1/b)决定植物的代谢指数, 当分支指数1/a、1/b分别为理论值2.0、3.0时, 代谢速率与个体大小的3/4次幂成正比, 但是恒定的3/4代谢指数并不能全面地反映植物的代谢情况。基于分支指数的协同变化, Price、Enquist和Savage对WBE模型进行扩展, 提出植物分支参数协同变化模型(简称PES模型)。该文借助于PES模型分析了7种木本植物的分支指数和代谢指数。结果表明: 物种间叶面积与叶生物量呈异速生长关系, 基于叶面积得到的分支指数1/a和代谢指数θ在物种间无显著差异, 基于叶生物量得到的分支指数1/a、1/b和代谢指数θ在物种间均存在显著差异, 但基于叶面积和叶生物量分别拟合出的整体分支指数1/a、1/b和代谢指数θ与理论值均无显著差异, 且用叶面积作为代谢速率的替代指标比用叶生物量分析得出的代谢指数与理论值更接近。今后研究应当关注植物叶面积与叶生物量的异速生长关系对植物代谢速率及相关功能特性的影响。  相似文献   

8.
James L. Maino  Michael R. Kearney 《Oikos》2015,124(12):1564-1570
The uptake of resources from the environment is a basic feature of all life. Consumption rate has been found to scale with body size with an exponent close to unity across diverse organisms. However, past analyses have ignored the important distinction between ontogenetic and interspecific size comparisons. Using principles of dynamic energy budget theory, we present a mechanistic model for the body mass scaling of consumption, which separates interspecific size effects from ontogenetic size effects. Our model predicts uptake to scale with surface‐area (mass2/3) during ontogenetic growth but more quickly (between mass3/4 and mass1) for interspecific comparisons. Available data for 41 insect species on consumption and assimilation during ontogeny provides strong empirical support for our theoretical predictions. Specifically, consumption rate scaled interspecifically with an exponent close to unity (0.89) but during ontogenetic growth scaled more slowly with an exponent of 0.70. Assimilation rate (consumption minus defecation) through ontogeny scaled more slowly than consumption due to a decrease in assimilation efficiency as insects grow. Our results highlight how body size imposes different constraints on metabolism depending on whether the size comparison is ontogenetic or inter‐specific. Synthesis One of the most robust patterns in biology is the effect of body size on metabolism – a relationship that underlies the rapidly emerging field of metabolic ecology. However, the precise energetic constraints imposed by body size have been notoriously difficult to entangle. Here we show that the constraints imposed on metabolism by body size are different depending on whether the size comparison is ontogenetic or interspecific. Using a single unifying theory of animal metabolism and a newly compiled data set on insect consumption and assimilation rates, we show that interspecific comparisons generally lead to the estimation of higher scaling exponents compared with ontogenetic comparisons. Our results help to explain large variation in estimated metabolic scaling exponents and will encourage future studies in metabolic ecology to make the important distinction between ontogenetic and evolutionary size changes.  相似文献   

9.
Quantitative scaling relationships among body mass, temperature and metabolic rate of organisms are still controversial, while resolution may be further complicated through the use of different and possibly inappropriate approaches to statistical analysis. We propose the application of a modelling strategy based on the theoretical approach of Akaike's information criteria and non‐linear model fitting (nlm). Accordingly, we collated and modelled available data at intraspecific level on the individual standard metabolic rate of Antarctic microarthropods as a function of body mass (M), temperature (T), species identity (S) and high rank taxa to which species belong (G) and tested predictions from metabolic scaling theory (mass‐metabolism allometric exponent b = 0.75, activation energy range 0.2–1.2 eV). We also performed allometric analysis based on logarithmic transformations (lm). Conclusions from lm and nlm approaches were different. Best‐supported models from lm incorporated T, M and S. The estimates of the allometric scaling exponent linking body mass and metabolic rate resulted in a value of 0.696 ± 0.105 (mean ± 95% CI). In contrast, the four best‐supported nlm models suggested that both the scaling exponent and activation energy significantly vary across the high rank taxa (Collembola, Cryptostigmata, Mesostigmata and Prostigmata) to which species belong, with mean values of b ranging from about 0.6 to 0.8. We therefore reached two conclusions: 1, published analyses of arthropod metabolism based on logarithmic data may be biased by data transformation; 2, non‐linear models applied to Antarctic microarthropod metabolic rate suggest that intraspecific scaling of standard metabolic rate in Antarctic microarthropods is highly variable and can be characterised by scaling exponents that greatly vary within taxa, which may have biased previous interspecific comparisons that neglected intraspecific variability.  相似文献   

10.
植物代谢速率与个体生物量关系研究进展   总被引:3,自引:0,他引:3  
植物的各项生理生态功能(例如,呼吸、生长和繁殖)都与个体生物量成异速生长关系。West, Brown及Enquist基于分形网络结构理论所提出的WBE模型认为:植物的代谢(呼吸)速率正比于个体生物量的3/4次幂。然而,恒定的“3/4异速生长指数”与实测数据、植物生理生态学等研究之间存在矛盾,引发激烈的争论。论文分析了不同回归方法对代谢指数的影响,重点对植物代谢速率与个体生物量异速生长关系研究进展进行了综述,分析并得出了植物代谢指数在小个体时接近1.0,并随着生物量的增加而系统减小,且其密切依赖于氮含量的调控的结论。据此,提出了进一步深入研究植物代谢速率个体生物量关系需要解决的一些科学问题。  相似文献   

11.
? Premise of the study: An overarching but vigorously debated plant model proposed by the West, Brown, Enquist (WBE) theory predicts the scaling relationships for numerous botanical phenomena. However, few studies have evaluated this model's basic assumptions, one of which is that natural selection has resulted in hierarchal networks that minimize the energy required to distribute nutrients internally and have thus produced highly efficient organisms. ? Methods: If these core assumptions are correct, an "idealized" plant complying with all of the scaling relationships emerging from the WBE plant model should rapidly outcompete other plants, even those that differ slightly from it. To test this reasoning, a computer model was used to simulate competition between an idealized WBE plant, a generic "average" angiosperm (GA), and one of seven variants of the idealized WBE plant, each being similar to the GA in one of the GA's scaling parameters. ? Key results: Replicate simulations show that the idealized WBE plant rapidly outcompetes all other plants under light-shade and open-field conditions. However, changing only one of the WBE's scaling parameters results in death or in the coexistence of WBE and GA plants. ? Conclusions: These simulations support a core assumption of the WBE plant model and suggest why this idealized plant has not evolved.  相似文献   

12.
Biomass partitioning is important for illustrating terrestrial ecosystem carbon flux. West, Brown and Enquist (WBE) model predicts that an optimal 3/4 allometric scaling of leaf mass and total biomass of individual plants will be applied in diverse communities. However, amount of scientific evidence suggests an involvement of some biological and environmental factors in interpreting the variation of scaling exponent observed in empirical studies. In this paper, biomass information of 1175 forested communities in China was collected and categorized into groups in terms of leaf form and function, as well as their locations to test whether the allocation pattern was conserved or variable with internal and/or environmental variations. Model Type II regression protocol was adopted to perform all the regressions. The results empirically showed that the slopes varied significantly across diverse forested biomes, between conifer and broadleaved forests, and between evergreen and deciduous forests. Based on the results, leaf form and function and their relations to environments play a significant role in the modification of the WBE model to explore more accurate laws in nature.  相似文献   

13.
The use of allometric scaling to estimate drug doses, regimes, and clearance rates (metabolic dosing) is based on the principle that the amount of drug to be administered is more closely related to daily energy use than to body mass (kg). Thus, by using the allometric estimations of minimal energy consumption (MEC) in kcal day−1 based on the formula MEC= kM b b , where b =3, it is thought to be possible to extrapolate appropriate drug dosage regimens to species for which direct MEC data are unavailable. However, the allometric equations for respiratory variables in birds were developed 30 years ago, and were based on a very small sample size, while the appropriate scaling exponent for the allometry of energy use is a matter of considerable debate. Hence, we revisit the issue of the scaling of therapeutic regimes in birds using the most current expanded database available (resting metabolic rate data for 296 species across 17 bird orders), taking account of the non-independence of species in this process using a phylogenetically independent approach. We show that the use of caloric values to estimate daily energy consumption introduces significant error into the formula, as there are a number of assumptions that are made when converting rate of oxygen consumption to a caloric value. We also show that there are significant differences in the proportionality or Hainsworth coefficients k across taxa when the data are examined in a phylogenetic context, although the allometric scaling exponent does not vary. We therefore recommend the use of only data based on oxygen consumption values, and not caloric values, and a multi-order phylogenetic model when calculating the appropriate drug dosage regime.  相似文献   

14.
Allometric scaling of metabolic rates is commonly described as a power function and 0.75 is a widely accepted exponent. The universality of this exponent is in doubt and, particularly for insects, contradictory results have been obtained. Furthermore, sexual differences in scaling exponents are observed for several species that could lead to artefacts when they are not considered in intra‐ and interspecific scaling. Whether the metabolic scaling exponent in the lesser wax moth Achroia grisella differs significantly from 0.75 is tested, as well as whether it differs between the sexes. Adults of this moth neither feed nor drink, rendering them as suitable subjects for a study of metabolic rates. Neglecting sex differences, a metabolic scaling exponent of 0.8 is recorded. However, there are significant differences in metabolic scaling between the sexes. When considered separately, males scale with 0.96 and females with 0.67. Thus, in this species, a scaling exponent of 0.75 does not appear to exist either for males or females. The body size optimization model offers a potential explanation for the sex differences in metabolic scaling, although it remains to be tested in wax moths. With insects in particular, there is the need for more detailed studies on the scaling of metabolic rates that also take sexual differences into account.  相似文献   

15.
WBE 模型及其在生态学中的应用:研究概述   总被引:7,自引:0,他引:7  
李妍  李海涛  金冬梅  孙书存 《生态学报》2007,27(7):3018-3031
介绍了WBE模型,综述了该模型在生态学中的应用进展。WBE模型,以及以该模型为基础的MTE模型,假设生物体为自相似分形网络结构,提出代谢速率和个体大小之间存在3/4指数关系,分别预测了从个体到生物圈多个尺度上的生物属性之间的异速生长关系,而且部分得到了验证。WBE模型的应用涵盖了个体组织生物量、年生长率,种群密度和生态系统单位面积产量、能量流动率等多个方面;即使在生物圈大尺度上,WBE模型也可用来预测试验中无法直接测量的特征变量的属性,如全球碳储量的估算等。至今,关于WBE和MTE模型仍然存在各种褒贬争论,讨论焦点主要集中于模型建立的前提假设以及权度指数的预测。今后的研究工作应规范试验技术和方法,考虑物种多样性和环境等因素的影响,提出符合各类生物的模型结构体系,使其具有更广泛的应用性和预测性。  相似文献   

16.
17.
Metabolism, growth, and the assimilation of energy and materials are essential processes that are intricately related and depend heavily on animal size. However, models that relate the ontogenetic scaling of energy assimilation and metabolism to growth rely on assumptions that have yet to be rigorously tested. Based on detailed daily measurements of metabolism, growth, and assimilation in tobacco hornworms, Manduca sexta, we provide a first experimental test of the core assumptions of a metabolic scaling model of ontogenetic growth. Metabolic scaling parameters changed over development, in violation of the model assumptions. At the same time, the scaling of growth rate matches that of metabolic rate, with similar scaling exponents both across and within developmental instars. Rates of assimilation were much higher than expected during the first two instars and did not match the patterns of scaling of growth and metabolism, which suggests high costs of biosynthesis early in development. The rapid increase in size and discrete instars observed in larval insect development provide an ideal system for understanding how patterns of growth and metabolism emerge from fundamental cellular processes and the exchange of materials and energy between an organism and its environment.  相似文献   

18.
Recently, the size of the active stem cell pool has been predicted to scale allometrically with the adult mass of mammalian species with a 3/4 power exponent, similar to what has been found to occur for the resting metabolic rate across species. Here we investigate the allometric scaling of human haemopoietic stem cells (HSCs) during ontogenic growth and predict a linear scaling with body mass. We also investigate the allometric scaling of resting metabolic rate during growth in humans and find a linear scaling with mass similar to that of the haemopoietic stem cell pool. Our findings suggest a common underlying organizational principle determining the linear scaling of both the stem cell pool and resting metabolic rate with mass during ontogenic growth within the human species, combined with a 3/4 scaling with adult mass across mammalian species. It is possible that such common principles remain valid for haemopoiesis in other mammalian species.  相似文献   

19.
The theoretical model of West, Brown and Enquist (hereafter WBE) proposed the fractal geometry of the transport system as the origin of the allometric scaling laws observed in nature. The WBE model has either been criticized for some restrictive and biologically unrealistic constraints or its reliability debated on the evidence of empirical tests. In this work, we revised the structure of the WBE model for vascular plants, highlighting some critical assumptions and simplifications and discuss them with regard to empirical evidence from plant anatomy and physiology. We conclude that the WBE model had the distinct merit of shedding light on some important features such as conduit tapering. Nonetheless, it is over-simplistic and a revised model would be desirable with an ontogenetic perspective that takes some important phenomena into account, such as the transformation of the inner sapwood into heartwood and the effect of hydraulic constraints in limiting the growth in height.  相似文献   

20.
We describe three models predicting relationships between: (a) the taxonomic composition of the regional species pool of phytophagous insects and the composition of the phytophagous insect fauna on a host taxon; and (b) the faunal composition of two host taxa. The predictions of these models were compared with empirical data representing the regional pool of phytophages in Central Europe and the faunas of two plant taxa: the cabbage plants (Brassicaceae) and the thistles (Asteraceae: Cardueae). Three important findings emerge at a general level. (1) Different taxonomic levels of insects (orders, families, genera) of the regional pool and on the investigated host taxa are well correlated in terms of species richness, but there is no consistent trend in the variance explained by this correlation across taxonomic levels. (2) The model considering evolutionary interactions and speciation processes is consistent with patterns found in the empirical data. (3) Asymmetries in sampled species numbers of insect families on both host taxa may be accounted for by reference to the biology of these insects. We conclude that the faunas of single host taxa can provide the basis for extrapolating to the regional pool, at least at high taxonomic levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号