首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The ribosomal RNA (rRNA) gene region of the fourNosema sp. isolates (C01, C02, C03 and C04) fromPieris rapae in Korea has been examined. Complete DNA sequence data (3779 bp) of The rRNA gene ofNosema sp. C01 are presented for the small subunit gene (SSU rRNA: 1236 bp), the internal transcribed spacer (ITS: 37 bp), and the large subunit gene (LSU rRNA 2506 bp). The secondary structures ofNosema sp. COI SSU and LSU rRNA genes are constructed and described. The SSU rRNA showed a hypervariable V4 region identified four additional stems including a pseudoknot. Phylogenetic analysis based on the SSU rRNA suggests that the four isolates belong to the ‘true’Nosema group. In contrast to theNosema/Vairimorpha clade, the members of the group are highly divergent.  相似文献   

2.
A phylogenetic study of marine ascomycetes was initiated to test and refine evolutionary hypotheses of marine-terrestrial transitions among ascomycetes. Taxon sampling focused on the Halosphaeriales, the largest order of marine ascomycetes. Approximately 1050 base pairs (bp) of the gene that codes for the nuclear small subunit (SSU) and 600 bp of the gene that codes for the nuclear large subunit (LSU) ribosomal RNAs (rDNA) were sequenced for 15 halosphaerialean taxa and integrated into a data set of homologous sequences from terrestrial ascomycetes. An initial set of phylogenetic analyses of the SSU rDNA from 38 taxa representing 15 major orders of the phylum Ascomycota confirmed a close phylogenetic relationship of the halosphaerialean species with several other orders of perithecial ascomycetes. A second set of analyses, which involved more intensive taxon sampling of perithecial ascomycetes, was performed using the SSU and LSU rDNA data in combined analyses. These second analyses included 15 halosphaerialean taxa, 26 terrestrial perithecial fungi from eight orders, and five outgroup taxa from the Pezizales. In these analyses the Halosphaeriales were polyphyletic and comprised two distinct lineages. One clade of Halosphaeriales comprised 12 taxa from 11 genera and was most closely related to terrestrial fungi of the Microascales. The second clade of halosphaerialean fungi comprised taxa from the genera Lulworthia and Lindra and was an isolated lineage among the perithecial fungi. Both the main clade of Halosphaeriales and the Lulworthia/Lindra clade are supported by the data as being independently derived from terrestrial ancestors.  相似文献   

3.
Research pertaining to the two closely‐related microsporidian genera Nosema and Vairimorpha is hindered by inconsistencies in species differentiation within and between the two clades. One proposal to better delimit these genera is to restructure the Nosema around a “True Nosema” clade, consisting of species that share a characteristic reversed ribosomal DNA operon arrangement and small subunit (SSU) ribosomal DNA sequences similar to that of the Nosema type species, N. bombycis. Using this framework, we assess two distinct microsporidia recovered from the forest insect Bruce spanworm (Operophtera bruceata) by sequencing their SSU and internal transcribed spacer regions. Phylogenetic analyses place one of our isolates within the proposed True Nosema clade close to N. furnacalis and place the other in the broader Nosema/Vairimorpha clade close to N. thomsoni. We found that 25% of Bruce spanworm cadavers collected over the four‐year study period were infected with microsporidia, but no infections were detected in cadavers of the Bruce spanworm's invasive congener, the winter moth (O. brumata), collected over the same period. We comment on these findings as they relate to the population dynamics of the Bruce spanworm‐winter moth system in this region, and more broadly, on the value of ribosomal DNA operon arrangement in Nosema systematics.  相似文献   

4.
A new species of the genus Boleodorus, recovered from southern Iran, is described and illustrated based upon morphological and molecular data. B. bushehrensis n. sp. is mainly characterized by having a wide and low cephalic region (which is continuous with the adjacent body), the oral aperture in a depression in side view under a light microscope, four lines in the lateral field, weak metacorpus with a vestigial-to-invisible valve, and short (26–38 mm long) hooked tail with rounded tip. The females are 334–464 mm long and have a spherical spermatheca filled with spheroid sperm; males have 11.5- to 12.0-mm-long spicules and weakly developed bursa. The new species has an annulated low cephalic region, four large cephalic papillae, and small crescent-shaped amphidial openings when observed by scanning electron microscopy (SEM). Its morphological and morphometric differences with seven known species are discussed. The phylogenetic relationships of the new species with other relevant genera and species have been studied using partial sequences of small and large subunit ribosomal DNA (SSU and LSU rDNA). In both the SSU and LSU phylogenies, the sequences of B. bushehrensis n. sp. and other Boleodorus spp. formed a clade. A second species, B. thylactus, when studied under SEM, has a raised, smooth cephalic region, four large cephalic papillae, and oblique amphidial slits, with the oral opening in a depression.  相似文献   

5.
ABSTRACT. The mixotrophic dinoflagellate Paragymnodinium shiwhaense n. gen., n. sp. is described from living cells and from cells prepared by light, scanning electron, and transmission electron microscopy. In addition, sequences of the small subunit (SSU) and large subunit (LSU) rDNA and photosynthetic pigments are reported. The episome is conical, while the hyposome is hemispherical. Cells are covered with polygonal amphiesmal vesicles arranged in 16 rows and containing a very thin plate‐like component. There is neither an apical groove nor apical line of narrow plates. Instead, there is a sulcal extension‐like furrow. The cingulum is as wide as 0.2–0.3 × cell length and displaced by 0.2–0.3 × cell length. Cell length and width of live cells fed Amphidinium carterae were 8.4–19.3 and 6.1–16.0 μm, respectively. Paragymnodinium shiwhaense does not have a nuclear envelope chamber nor a nuclear fibrous connective (NFC). Cells contain chloroplasts, nematocysts, trichocysts, and peduncle, though eyespots, pyrenoids, and pusules are absent. The main accessory pigment is peridinin. The sequence of the SSU rDNA of this dinoflagellate (GenBank AM408889) is 4% different from that of Gymnodinium aureolum, Lepidodinium viride, and Gymnodinium catenatum, the three closest species, while the LSU rDNA was 17–18% different from that of G. catenatum, Lepidodinium chlorophorum, and Gymnodinium nolleri. The phylogenetic trees show that this dinoflagellate belongs within the Gymnodinium sensu stricto clade. However, in contrast to Gymnodinium spp., cells lack nuclear envelope chambers, NFC, and an apical groove. Unlike Polykrikos spp., which have a taeniocyst–nematocyst complex, P. shiwhaense has nematocysts without taeniocysts. In addition, P. shiwhaense does not have ocelloids in contrast to Warnowia spp. and Nematodinium spp. Therefore, based on morphological and molecular analyses, we suggest that this taxon is a new species, also within a new genus.  相似文献   

6.
In the protist Euglena gracilis, the cytosolic small subunit (SSU) rRNA is a single, covalently continuous species typical of most eukaryotes; in contrast, the large subunit (LSU) rRNA is naturally fragmented, comprising 14 separate RNA molecules instead of the bipartite (28S + 5.8S) eukaryotic LSU rRNA typically seen. We present extensively revised secondary structure models of the E. gracilis SSU and LSU rRNAs and have mapped the positions of all of the modified nucleosides in these rRNAs (88 in SSU rRNA and 262 in LSU rRNA, with only 3 LSU rRNA modifications incompletely characterized). The relative proportions of ribose-methylated nucleosides and pseudouridine (∼ 60% and ∼ 35%, respectively) are closely similar in the two rRNAs; however, whereas the Euglena SSU rRNA has about the same absolute number of modifications as its human counterpart, the Euglena LSU rRNA has twice as many modifications as the corresponding human LSU rRNA. The increased levels of rRNA fragmentation and modification in E. gracilis LSU rRNA are correlated with a 3-fold increase in the level of mispairing in helical regions compared to the human LSU rRNA. In contrast, no comparable increase in mispairing is seen in helical regions of the SSU rRNA compared to its homologs in other eukaryotes. In view of the reported effects of both ribose-methylated nucleoside and pseudouridine residues on RNA structure, these correlations lead us to suggest that increased modification in the LSU rRNA may play a role in stabilizing a ‘looser’ structure promoted by elevated helical mispairing and a high degree of fragmentation.  相似文献   

7.
Phylogenetic analysis of Glomeromycota by partial LSU rDNA sequences   总被引:2,自引:0,他引:2  
We analyzed the large subunit ribosomal RNA (rRNA) gene [LSU ribosomal DNA (rDNA)] as a phylogenetic marker for arbuscular mycorrhizal (AM) fungal taxonomy. Partial LSU rDNA sequences were obtained from ten AM fungal isolates, comprising seven species, with two new primers designed for Glomeromycota LSU rDNA. The sequences, together with 58 sequences available from the databases, represented 31 AM fungal species. Neighbor joining and parsimony analyses were performed with the aim of evaluating the potential of the LSU rDNA for phylogenetic resolution. The resulting trees indicated that Archaeosporaceae are a basal group in Glomeromycota, Acaulosporaceae and Gigasporaceae belong to the same clade, while Glomeraceae are polyphyletic. The results support data obtained with the small subunit (SSU) rRNA gene, demonstrating that the LSU rRNA gene is a useful molecular marker for clarifying taxonomic and phylogenetic relationships in Glomeromycota.  相似文献   

8.
Primer sequences are described for amplifying and sequencing a large fragment (approximately 2500 b.p.) of the nuclear-encoded large-subunit ribosomal RNA gene (LSU) from red algae. In comparison to RuBisCo large-subunit gene (rbcL) and nuclear-encoded small-subunit ribosomal RNA gene (SSU) sequence data, LSU sequence data was intermediate in the number of phylogenetically informative positions and sequence divergence. Parsimony analysis of LSU sequences for 16 Gelidiales species resolved some nodes unresolved in rbcL and SSU parsimony trees. An analysis of LSU sequences from 13 species of red algae classified in 11 orders suggests that this gene may be useful in studies of higher-level relationships of red algae.  相似文献   

9.
We provide molecular systematics of a microporidian species, Nosema fumiferanae, one of the most common natural enemies of spruce budworm, Choristoneura fumiferana. The uncharacterized flanking region upstream of the large subunit (LSU) rRNA and the complete rRNA cistron of N. fumiferanae was 4,769 bp long. The organization of the rRNA gene was 5′‐LSU rRNA‐ITS‐SSU rRNA‐IGS‐5S‐3′ and corresponded primarily to most insect (i.e. lepidopteran) Nosema species identified and classified to date. Phylogenetic analysis based on the complete rRNA cistron indicated that N. fumiferanae is closely related to Nosema plutellae and is correctly assigned to the “true” Nosema group. Suggestions were provided on a criterion to delineate the “true” Nosema from other microsporidian species.  相似文献   

10.
Since 1998, a heterokont flagellate initially named Chattonella aff. verruculosa has formed recurrent extensive blooms in the North Sea and the Skagerrak, causing fish mortalities. Cells were isolated from the 2001 bloom off the south coast of Norway, and monoalgal cultures were established and compared with the Chattonella verruculosa Y. Hara et Chihara reference strain NIES 670 from Japan. The cells in Norwegian cultured isolates were very variable in size and form, being large oblong (up to 34 μm long) to small rounded (5–9 μm in diameter) with two unequal flagella, numerous chloroplasts, and mucocysts. The SSU and partial LSU rDNA sequences of strains from Norway and Japan were compared and differed by 0.4% (SSU) and 1.3% (LSU), respectively. Five strains from Norway were identical in the LSU rDNA region. Phylogenetic analyses based on heterokont SSU and concatenated SSU + LSU rDNA sequences placed C. aff. verruculosa and the Japanese C. verruculosa within the clade of Dictyochophyceae, with the picoflagellate Florenciella parvula Eikrem as the closest relative. Ultrastructure, morphology, and pigment composition supported this affinity. We propose the name Verrucophora farcimen sp. et gen. nov. for this flagellate and systematically place it within the class Dictyochophyceae. Our studies also show that C. verruculosa from Japan is genetically and morphologically different but closely related to V. farcimen. The species is transferred from the class Raphidophyceae to the class Dictyochophyceae and renamed Verrucophora verruculosa. We propose a new order, Florenciellales, to accommodate V. farcimen, V. verruculosa, and F. parvula.  相似文献   

11.
Grammatodinium Li & Shin is a monospecific genus described from the Tongyeong Bay area in Korea. In the current study, we describe its presence in the American Eastern Pacific coast for the first time, particularly in Acapulco Bay, Mexico, using morphological, molecular and environmental data. Sequences generated in this study with SSU and LSU formed a monophyletic group with other sequences from GenBank belonging to Gr. tongyeonginum, the only species known for the genus; however, genetic distance values between this species and our specimens (8.5% SSU; 2.8% LSU) were equivalent or even greater than those reported in other genera of dinoflagellates. Our phylogeny clearly showed the relationship of Grammatodinium with the families Pyrocystaceae and Gonyaulacaceae. In our specimens, cells appeared individually and in colonies of up to 16 cells, which were observed mainly during the dry season, so they could be confused with Gymnodinium catenatum, a common dinoflagellate in Acapulco with which they can coexist and share their general appearance, but they are clearly differentiated by the presence of longitudinal furrows throughout the body and a yellowish-green coloration, both absent in Gymnodinium catenatum. Although our evidence strongly suggests the presence of a new species for the region, more detailed morphological examinations are needed to confirm this statement.  相似文献   

12.
Gambierdiscus spp. are epiphytic, benthic dinoflagellates. Some species have been shown to be toxic and cause ciguatera fish poisoning. We report, for the first time, the occurrence of Gambierdiscus caribaeus isolated from the waters off Jeju Island in Korea. Its morphology was similar to that of the original Belize strains of G. caribaeus. Gambierdiscus caribaeus has been reported in the tropical and subtropical waters of the Pacific, Gulf of Mexico, Caribbean Sea, and Floridian coast. Our report extends its range to the North Pacific Ocean. The plates of the Korean strain were arranged in a Kofoidian series of Po, 3′, 7′′, 6c, 6s, 5′′′, 1p, and 2′′′′, morphologically closer to other strains of G. caribaeus than to G. carpenteri. When properly aligned, its small subunit (SSU) rDNA was 0.5% different from those of Gambierdiscus sp. C‐1, a strain that was isolated from the waters off eastern Japan, but was 2.4–4.0% different from those of the NOAA strains of G. caribaeus and 3.1–3.4% different from those of the NOAA strains of G. carpenteri. Additionally, the D1–D3 large subunit (LSU) rDNA sequence of the Korean strain of G. caribaeus was 4.7–5.3% different from those of the NOAA strains of G. caribaeus and 7.1–7.5% different from those of all reported G. carpenteri strains, including the NOAA strains. In phylogenetic trees based on SSU and LSU rDNA sequences, our Korean strain was basal to the clade consisting of the NOAA strains of G. caribaeus, which in turn was sister clade to all reported G. carpenteri strains.  相似文献   

13.
The heterotrophic dinoflagellate Gyrodiniellum shiwhaense n. gen., n. sp. is described from live cells and from cells prepared for light, scanning electron, and transmission electron microscopy. Also, sequences of the small subunit (SSU) and large subunit (LSU) of rDNA have been analyzed. The episome is conical, while the hyposome is ellipsoid. Cells are covered with polygonal amphiesmal vesicles arranged in 16 horizontal rows. Unlike other Gyrodinium-like dinoflagellates, the apical end of the cell shows a loop-shaped row of five elongate amphiesmal vesicles. The cingulum is displaced by 0.3-0.5 × cell length. Cells that were feeding on the dinoflagellate Amphidinium carterae Hulburt were 9.1-21.6 μm long and 6.6-15.7 μm wide. Cells of G. shiwhaense contain nematocysts, trichocysts, a peduncle, and pusule systems, but they lack chloroplasts. The SSU rDNA sequence is >3% different from that of the six most closely related species: Warnowia sp. (FJ947040), Lepidodinium viride Watanabe, Suda, Inouye, Sawaguchi & Chihara, Gymnodinium aureolum (Hulburt) Hansen, Gymnodinium catenatum Graham, Nematodinium sp. (FJ947039), and Gymnodinium sp. MUCC284 (AF022196), while the LSU rDNA is 11-12% different from that of Warnowia sp., G. aureolum, and Nematodinium sp. (FJ947041). The phylogenetic trees show that the species belongs in the Gymnodinium sensu stricto clade. However, in contrast to Gymnodinium spp., cells lack nuclear envelope chambers and a nuclear fibrous connective. Unlike Polykrikos spp., cells of which possess a taeniocyst-nematocyst complex, G. shiwhaense has nematocysts but lacks taeniocysts. It differs from Paragymnodinium shiwhaense Kang, Jeong, Moestrup & Shin by possessing nematocysts with stylets and filaments. Gyrodiniellum shiwhaense n. gen., n. sp. furthermore lacks ocelloids, in contrast to Warnowia spp., Nematodinium spp., and Proterythropsis spp. Based on morphological and molecular data, we suggest that the taxon represents a new species within a new genus.  相似文献   

14.
We investigated here, the prevalence of Nosema microsporidia infections in the honeybees, Apis cerana japonica and Apis mellifera, in the Tohoku region of Japan. We detected Nosema ceranae DNA in 14 (2.8%) of 509 A. cerana japonica and in 34 (21.9%) of 155 A. mellifera honeybees from Aomori, Iwate, Akita, Yamagata, and Fukushima prefectures. Nosema apis DNA was undetectable in A. cerana japonica and A. mellifera. The unidentifiable Nosema species that genetically differed from N. apis, N. ceranae, and N. neumanni in terms of small subunit (SSU) rDNA, large subunit rDNA, and internal transcribed spacer sequences was identified in 105 (20.6%) of 509 A. cerana japonica and in 1 (0.6%) of 155 A. mellifera honeybees, and from Iwate prefecture. A phylogenetic tree based on SSU rDNA sequences showed that the Nosema sp. belonged to the same clade as N. thomsoni detected in moth and solitary bees in North America and N. pieriae found in cabbage butterfly in Turkey, which have not hitherto been detected in honeybees. The morphological characteristics of the spores should be analyzed to enable species identification of the Nosema sp.  相似文献   

15.
Small subunit (SSU) and large subunit (LSU) rDNA sequences have been commonly used to delineate the taxonomy and biogeography of the planktonic diatom genus Skeletonema, but the genes occur as multiple copies and are therefore not suitable for barcoding purposes. Here, we analyzed phylogenetic relationships of Skeletonema using the mitochondrial‐encoded cytochrome c oxidase I gene (cox1), as well as partial LSU rDNA (D1–D3) and SSU rDNA, to identify the factors that define species and to evaluate the utility of these three markers for this taxon. Twelve Skeletonema species were divided into six clades, I–VI, each of which comprised the same species by the three markers: clades I (S. japonicum, S. grethae, S. pseudocostatum, and S. tropicum), II (S. menzelii), III (S. dohrnii and S. marinoi), IV (S. costatum, S. potamos, and S. subsalsum), V (S. grevillei), and VI (S. ardens). However, the branching order among these clades was incongruent among the markers. In clade III, six S. marinoi strains had identical cox1 sequences. These S. marinoi strains branched along with S. dohrnii, except for strains from the Gulf of Naples, with high support in cox1. Species delimitation between S. dohrnii and S. marinoi was therefore not supported. In clade IV, S. costatum and S. subsalsum were robustly clustered, with S. potamos as a sister clade in the cox1 tree, not in the LSU and SSU trees. In clade II, cox1 also confirmed that S. menzelii includes three subclades potentially distinguishable from each other by morphological features. Cox1 proved to be the most useful marker for the identification of Skeletonema species because it gave a tree with highly supported clades, has sufficient variation within and among species, encodes a protein in a single copy, and requires relatively few primers.  相似文献   

16.
The heterotrophic marine dinoflagellate genus Protoperidinium is the largest genus in the Dinophyceae. Previously, we reported on the intrageneric and intergeneric phylogenetic relationships of 10 species of Protoperidinium, from four sections, based on small subunit (SSU) rDNA sequences. The present paper reports on the impact of data from an additional 5 species and, therefore, an additional two sections, using the SSU rDNA data, but now also incorporating sequence data from the large subunit (LSU) rDNA. These sequences, in isolation and in combination, were used to reconstruct the evolutionary history of the genus. The LSU rDNA trees support a monophyletic genus, but the phylogenetic position within the Dinophyceae remains ambiguous. The SSU, LSU and SSU + LSU rDNA phylogenies support monophyly in the sections Avellana, Divergentia, Oceanica and Protoperidinium, but the section Conica is paraphyletic. Therefore, the concept of discrete taxonomic sections based on the shape of 1′ plate and 2a plate is upheld by molecular phylogeny. Furthermore, the section Oceanica is indicated as having an early divergence from other groups within the genus. The sections Avellana and Excentrica and a clade combining the sections Divergentia/Protoperidinium derived from Conica‐type dinoflagellates independently. Analysis of the LSU rDNA data resulted in the same phylogeny as that obtained using SSU rDNA data and, with increased taxon sampling, including members of new sections, a clearer idea of the evolution of morphological features within the genus Protoperidinium was obtained. Intraspecific variation was found in Protoperidinium conicum (Gran) Balech, Protoperidinium excentricum (Paulsen) Balech and Protoperidinium pellucidum Bergh based on SSU rDNA data and also in Protoperidinium claudicans (Paulsen) Balech, P. conicum and Protoperidinium denticulatum (Gran et Braarud) Balech based on LSU rDNA sequences. The common occurrence of base pair substitutions in P. conicum is indicative of the presence of cryptic species.  相似文献   

17.
Partial sequences (1032 bp) of the nuclear-encoded large ribosomal RNA gene (LSU) were determined for 16 gelidialean species, and analyzed separately and in combination with plastid rbcL and nuclear SSU gene sequences. The number of informative characters and levels of sequence divergence among taxa are intermediate in LSU sequences as compared to that for rbcL and SSU. Analyses of the separate LSU, and a combined LSU, SSU, and rbcL data sets have identified early-diverging lineages within the Gelidiales including Gelidiella, Pterocladia, Pterocladiella, and a lineage including Gelidium and species classified in other genera. The relationships among most gelidialean taxa are well-resolved and well-supported by analyses of the combined data; however, the relationships of Ptilophora and Capreolia remain unclear. It is speculated that these two lineages have diverged from a common ancestor over an evolutionarily short period of time. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
19.
The cyst–theca relationship of Protoperidinium fukuyoi n. sp. (Dinoflagellata, Protoperidiniaceae) is established by incubating resting cysts from estuarine sediments off southern Vancouver Island, British Columbia, Canada, and San Pedro Harbor, California, USA. The cysts have a brown‐coloured wall, and are characterized by a saphopylic archeopyle comprising three apical plates, the apical pore plate and canal plate; and acuminate processes typically arranged in linear clusters. We elucidate the phylogenetic relationship of P. fukuyoi through large and small subunit (LSU and SSU) rDNA sequences, and also report the SSU of the cyst‐defined species Islandinium minutum (Harland & Reid) Head et al. 2001. Molecular phylogenetic analysis by SSU rDNA shows that both species are closely related to Protoperidinium americanum (Gran & Braarud 1935) Balech 1974. Large subunit rDNA phylogeny also supports a close relationship between P. fukuyoi and P. americanum. Three subgroups in total are further characterized within the Monovela group. The cyst of P. fukuyoi shows a wide geographical range along the coastal tropical to temperate areas of the North‐east Pacific, its distribution reflecting optimal summer sea‐surface temperatures of ~14–18 °C and salinities of 22–34 psu.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号