首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Two field-collected Culex quinquefasciatus colonies were subjected to selection pressure by three strains of Bacillus sphaericus, C3-41, 2362, and IAB59, under laboratory conditions. After 13 and 18 generations of exposure to high concentrations of C3-41 and IAB59, a field-collected low-level-resistant colony developed >144,000- and 46.3-fold resistance to strains C3-41 and IAB59, respectively. A field-collected susceptible colony was selected with 2362 and IAB59 for 46 and 12 generations and attained >162,000- and 5.7-fold resistance to the two agents, respectively. The pattern of resistance evolution in mosquitoes depended on continuous selection pressure, and the stronger the selection pressure, the more quickly resistance developed. The resistant colonies obtained after selection with B. sphaericus C3-41 and 2362 showed very high levels of cross-resistance to B. sphaericus 2362 and C3-41, respectively, but they displayed only low-level cross-resistance to IAB59. On the other hand, the IAB59-selected colonies had high cross-resistance to both strains C3-41 and 2362. Additionally, the slower evolution of resistance against strain IAB59 may be explained by the presence of another larvicidal factor. This is in agreement with the nontoxicity of the cloned and purified binary toxin (Bin1) of IAB59 for 2362-resistant larvae. We also verified that all the B. sphaericus-selected colonies showed no cross-resistance to Bacillus thuringiensis subsp. israelensis, suggesting that it would be a promising alternative in managing resistance to B. sphaericus in C. quinquefasciatus larvae.  相似文献   

2.
Bacillus sphaericus strains 1593, 1404, and SSII-1 were assayed for infectivity against field-collected larvae of Psorophora columbiae, Culex nigripalpus, and Aedes taeniorhynchus in southwest Florida. Results indicate that all three strains are highly active against the Psorophora and Culex species. A. taeniorhynchus is also susceptible but requires higher dosages to achieve lethal responses. Tests were also conducted on the rate of infection and the differences in susceptibility of different instars to B. sphaericus. These tests indicate that nearly 75% of the mortality that occurs in the course of exposure to B. sphaericus occurs within 48 hr post-incubation with the bacteria. Furthermore, our tests indicate P. columbiae larvae decrease in susceptibility to the Bacillus with increase in larval age (instar). This investigation shows B. sphaericus to be a feasible biological control agent that warrants further study.  相似文献   

3.
Lysinibacillus sphaericus strains belonging the antigenic group H5a5b produce spores with larvicidal activity against larvae of Culex mosquitoes. C7, a new isolated strain, which presents similar biochemical characteristics and Bin toxins in their spores as the reference strain 2362, was, however, more active against larvae of Culex mosquitoes. The contribution of the surface layer protein (S-layer) to this behaviour was envisaged since this envelope protein has been implicated in the pathogenicity of several bacilli, and we had previously reported its association to spores. Microscopic observation by immunofluorescence detection with anti S-layer antibody in the spores confirms their attachment. S-layers and BinA and BinB toxins formed high molecular weight multimers in spores as shown by SDS-PAGE and western blot detection. Purified S-layer from both L. sphaericus C7 and 2362 strain cultures was by itself toxic against Culex sp larvae, however, that from C7 strain was also toxic against Aedes aegypti. Synergistic effect between purified S-layer and spore-crystal preparations was observed against Culex sp. and Aedes aegypti larvae. This effect was more evident with the C7 strain. In silico analyses of the S-layer sequence suggest the presence of chitin-binding and hemolytic domains. Both biochemical characteristics were detected for both S-layers strains that must justify their contribution to pathogenicity.  相似文献   

4.
The bio-efficacy of Aloe vera leaf extract and bacterial insecticide, Bacillus sphaericus larvicidal activity was assessed against the first to fourth instars larvae of Aedes aegypti, under the laboratory conditions. The plant material was shade dried at room temperature and powdered coarsely. A. vera and B. sphaericus show varied degrees of larvicidal activity against various instars larvae of A. aegypti. The LC50 of A. vera against the first to fourth instars larvae were 162.74, 201.43, 253.30 and 300.05 ppm and the LC90 442.98, 518.86, 563.18 and 612.96 ppm, respectively. B. sphaericus against the first to fourth instars larvae the LC50 values were 68.21, 79.13, 93.48, and 107.05 ppm and the LC90 values 149.15, 164.67, 183.84, and 201.09 ppm, respectively. However, the combined treatment of A. vera + B. sphaericus (1:2) material shows highest larvicidal activity of the LC50 values 54.80, 63.11, 74.66 and 95.10 ppm; The LC90 values of 145.29, 160.14, 179.74 and 209.98 ppm, against A. aegypti in all the tested concentrations than the individuals and clearly established that there is a substantial amount of synergist act. The present investigation clearly exhibits that both A. vera and B. sphaericus materials could serve as a potential larvicidal agent. Since, A. aegypti is a container breeder vector mosquito this user and eco-friendly and low-cost vector control strategy could be a viable solution to the existing dengue disease burden. Therefore, this study provides first report on the mosquito larvicidal activity the combined effect of A. vera leaf extract and B. sphaericus against as target species of A. aegypti.  相似文献   

5.
Whey permeate (WP) was used efficiently for production of mosquitocidal toxin by Bacillus sphaericus 2362 (B. sphaericus 2362) and the Egyptian isolate, B. sphaericus 14N1 (B. sphaericus 14N1) under both submerged and solid state fermentation conditions. Under submerged fermentation, high mosquitocidal activity was produced by B. sphaericus 2362 and B. sphaericus 14N1 at 50-100% and 25-70% WP, respectively. Initial pH of WP was a critical factor for toxin production by both tested organisms. The highest toxicity was obtained at initial pH 7. Egyptian isolate, B. sphaericus 14N1 was tested for growth and toxin production under solid state fermentation conditions (SSF) by using WP as moistening agent instead of distilled water. The optimum conditions for production of B. sphaericus 14N1 on wheat bran-WP medium were 10 g wheat bran/250 ml flask moistened with 10-70% WP at 50% moisture content, inoculum size ranged between 17.2 × 107 and 34.4 × 107 and 6 days incubation under static conditions at 30 °C. Preliminary pilot-scale production of B. sphaericus 14N1 under SSF conditions in trays proved that wheat bran-WP medium was efficient and economic for industrial production of mosquitocidal toxin by B. sphaericus.  相似文献   

6.
Bacillus sphaericus is a mosquitocidal bacterium recently developed as a commercial larvicide that is used worldwide to control pestiferous and vector mosquitoes. Whereas B. sphaericus is highly active against larvae of Culex and Anopheles mosquitoes, it is virtually nontoxic to Aedes aegypti, an important vector species. In the present study, we evaluated the capacity of the cytolytic protein Cyt1A from Bacillus thuringiensis subsp. israelensis to enhance the toxicity of B. sphaericus toward A. aegypti. Various combinations of these two materials were evaluated, and all were highly toxic. A ratio of 10:1 of B. sphaericus to Cyt1A was 3,600-fold more toxic to A. aegypti than B. sphaericus alone. Statistical analysis showed this high activity was due to synergism between the Cyt1A toxin and B. sphaericus. These results suggest that Cyt1A could be useful in expanding the host range of B. sphaericus.  相似文献   

7.
Strains of Bacillus sphaericus exhibit varying levels of virulence against mosquito larvae. The most potent strain, B. sphaericus 2362, which is the active ingredient in the commercial product VectoLex®, together with another well-known larvicide Bacillus thuringiensis subsp. israelensis, is used to control vector and nuisance mosquito larvae in many regions of the world. Although not all strains of B. sphaericus are mosquitocidal, lethal strains produce one or two combinations of three different types of toxins. These are (1) the binary toxin (Bin) composed of two proteins of 42 kDa (BinA) and 51 kDa (BinB), which are synthesized during sporulation and co-crystallize, (2) the soluble mosquitocidal toxins (Mtx1, Mtx2 and Mtx3) produced during vegetative growth, and (3) the two-component crystal toxin (Cry48Aa1/Cry49Aa1). Non-mosquitocidal toxins are also produced by certain strains of B. sphaericus, for example sphaericolysin, a novel insecticidal protein toxic to cockroaches. Larvicides based on B. sphaericus-based have the advantage of longer persistence in treated habitats compared to B. thuringiensis subsp. israelensis. However, resistance is a much greater threat, and has already emerged at significant levels in field populations in China and Thailand treated with B. sphaericus. This likely occurred because toxicity depends principally on Bin rather than various combinations of crystal (Cry) and cytolytic (Cyt) toxins present in B. thuringiensis subsp. israelensis. Here we review both the general characteristics of B. sphaericus, particularly as they relate to larvicidal isolates, and strategies or considerations for engineering more potent strains of this bacterium that contain built-in mechanisms that delay or overcome resistance to Bin in natural mosquito populations.  相似文献   

8.
Larvicidal potency of three primary powders based on Bacillus sphaericus strains 1593 and 1881 was studied on mosquito larvae. Two acetone powders, P 1593 and P 1881, were very toxic for Anopheles stephensi larvae. The potency of a third lyophilized powder RB 80 made from 1593 strain compared even better when tested against Anopheles stephensi and Culex pipiens pipiens larvae. LC50's after 48 hr were 0.15 and 0.003 mg/ml, respectively. After storage of RB 80 aqueous suspensions over 2 years or after heat exposure of RB 80 powder, larvicidal potency was still high, indicating an excellent stability. The use of RB 80, because of all its qualities, is suggested as a first experimental standard for titration of B. sphaericus preparations.  相似文献   

9.
Insecticidal Activity of Bacillus laterosporus   总被引:2,自引:0,他引:2       下载免费PDF全文
The Bacillus laterosporus strains 921 and 615 were shown to have toxicity for larvae of the mosquitoes Aedes aegypti, Anopheles stephensi, and Culex pipiens. The larvicidal activity of B. laterosporus was associated with spores and crystalline inclusions. Purified B. laterosporus 615 crystals were highly toxic for Aedes aegypti and Anopheles stephensi.  相似文献   

10.
Bacillus sphaericus strain 1593 and B. thuringiensis serotype H-14 were evaluated for persistence of toxicity against two species of mosquito larvae, Culex quinquefasciatus and Aedes aegypti, in a selected simulating plot in Bangkok. Both strains of bacteria demonstrated larvicidal activity towards both species of mosquito larvae. In tap water, the toxicity of B. sphaericus strain 1593 was found to be greater towards C. quinquefasciatus larvae than A. aegypti larvae, whereas the toxicity of B. thuringiensis serotype H-14 was found to be greater towards A. aegypti larvae than C. quinquefasciatus larvae. The persistence of toxicity of these two bacteria was found to be different. The lethal concentration of B. thuriengiensis H-14 against A. aegypti decreased from LC90 to below LC50 in about 15 weeks when tested in tap water. The decrease was faster in polluted water. The toxicity of B. sphaericus 1593 towards C. quinquefasciatus larvae persisted for at least 9 months in tap water and 6 months in polluted water. The multiplication of bacteria was indicated only in populations of B. sphaericus 1593 tested with C. quinquefasciatus larvae.  相似文献   

11.
Certain strains of Bacillus sphaericus produce a highly toxic mosquito-larvicidal binary toxin during sporulation. The binary toxin is composed of toxic BinA (41.9 kDa) and receptor binding BinB (51.4 kDa) polypeptides and is active against vectors of filariasis, encephalitis and malaria. The toxin has been tested with limited use for the control of vector mosquitoes for more than two decades. The binA gene from a local ISPC-8 strain of B. sphaericus that is highly toxic to Culex and Anopheles mosquito species was cloned into pET16b and expressed in Escherichia coli. The purified BinA protein differs by one amino acid (R197 M) from BinA of the highest toxicity strains 1593/2362/C3-41. Majority of the expressed protein was observed in inclusion bodies. BinA inclusions alone from E. coli did not show toxic activity, like reported previously. However, the active form of BinA could be purified to homogeneity from the soluble fraction of E. coli cell lysate, grown at reduced temperature after isopropyl β-d-thiogalactopyranoside induction. The purified BinA protein with and without poly-histidine tag showed LC50 dose of 82.3 and 66.9 ng ml−1, respectively, at 48 h against Culex quinquefasciatus larvae. The secondary structure of BinA is expected to be mainly β strands as estimated using far-UV circular dichroism. The estimates matched well with the secondary structure predictions using amino acid sequence. This is the first report of large-scale purification and accurate toxicity estimation of soluble B. sphaericus BinA. This can help in design and synthesis of improved bacterial insecticide.  相似文献   

12.
The fragment containing the gene encoding the cytolytic Cyt1Ab1 protein from Bacillus thuringiensis subsp. medellin and its flanking sequences (I. Thiery, A. Delécluse, M. C. Tamayo, and S. Orduz, Appl. Environ. Microbiol. 63:468–473, 1997) was introduced into Bacillus sphaericus toxic strains 2362, 2297, and Iab872 by electroporation with the shuttle vector pMK3. Only small amounts of the protein were produced in recombinant strains 2362 and Iab872. The protein was detected in these strains only by Western blotting and immunodetection with antibody raised against Cyt1Ab1 protein. Large amounts of Cyt1Ab1 protein were produced in B. sphaericus recombinant strain 2297, and there was an additional crystal, other than that of the binary toxin, within the exosporium. The production of the Cyt1Ab1 protein in addition to the binary toxin did not increase the larvicidal activity of the B. sphaericus recombinant strain against susceptible mosquito populations of Culex pipiens or Aedes aegypti. However, it partially restored (10 to 20 times) susceptibility of the resistant mosquito populations of C. pipiens (SPHAE) and Culex quinquefasciatus (GeoR) to the binary toxin. The Cyt1Ab1 protein produced in recombinant B. thuringiensis SPL407(pcyt1Ab1) was synthesized in two types of crystal—one round and with various dense areas, surrounded by an envelope, and the other a regular cuboid crystal, very similar to that found in the B. sphaericus recombinant strain.  相似文献   

13.
Laboratory trials of Bacillus thuringiensis var. israelensis (serotype 14) and B. sphaericus strain 1593 against field-collected Aedes stimulans showed that susceptibility declined with increasing instar and decreasing temperature. Test results with B. sphaericus were more erratic than with B. thuringiensis, and the efficacy of the former declined more rapidly with decreasing temperature. B. thuringiensis was significantly more active than B. sphaericus under all treatment conditions. These results indicate that the effective use of this strain of B. sphaericus as a mosquito biological control agent may be limited to warm water situations against more susceptible species.  相似文献   

14.
The mosquito-larvicidal binary toxin of Bacillus sphaericus 2297 was expressed in Enterobacter amnigenus, a Gram-negative bacterium isolated from Anopheles dirus larvae gut. The toxin was placed under the regulation of various promoters in order to improve the expression level of the toxin. Amongst the recombinants obtained, E. amnigenus harboring pBS373, a plasmid which contains the toxin genes under the control of the native B. sphaericus promoter, expressed a significant amount of protein, comparable to that found in B. sphaericus 2297. In addition, this recombinant provided approximately twenty times higher toxicity against second-instar Anopheles dirus larvae when compared to B. sphaericus 2297. The procedure of obtaining this environmentally isolated bacterium from larvae gut and introducing the system for mosquito-larvicidal toxin synthesis is noteworthy. The promising result presented here provides a substantial degree of confidence for further field studies.  相似文献   

15.
The interaction of two cytolytic toxins, Cyt1Ab from Bacillus thuringiensis subsp. medellin and Cyt2Ba from Bacillus thuringiensis subsp. israelensis, with Bacillus sphaericus was evaluated against susceptible and resistant Culex quinquefasciatus and the nonsensitive species Aedes aegypti. Mixtures of B. sphaericus with either cytolytic toxin were synergistic, and B. sphaericus resistance in C. quinquefasciatus was suppressed from >17,000- to 2-fold with a 3:1 mixture of B. sphaericus and Cyt1Ab. This trait may prove useful for combating insecticide resistance and for improving the activity of microbial insecticides.  相似文献   

16.
Cry11A from Bacillus thuringiensis subsp. israelensis and Cry11Ba from Bacillus thuringiensis subsp. jegathesan were introduced, separately and in combination, into the chromosome of Bacillus sphaericus 2297 by in vivo recombination. Two loci on the B. sphaericus chromosome were chosen as target sites for recombination: the binary toxin locus and the gene encoding the 36-kDa protease that may be responsible for the cleavage of the Mtx protein. Disruption of the protease gene did not increase the larvicidal activity of the recombinant strain against Aedes aegypti and Culex pipiens. Synthesis of the Cry11A and Cry11Ba toxins made the recombinant strains toxic to A. aegypti larvae to which the parental strain was not toxic. The strain containing Cry11Ba was more toxic than strains containing the added Cry11A or both Cry11A and Cry11Ba. The production of the two toxins together with the binary toxin did not significantly increase the toxicity of the recombinant strain to susceptible C. pipiens larvae. However, the production of Cry11A and/or Cry11Ba partially overcame the resistance of C. pipiens SPHAE and Culex quinquefasciatus GeoR to B. sphaericus strain 2297.  相似文献   

17.
The 2297 strain of Bacillus sphaericus produces a crystal of the Bin (binary) toxin that is approximately fourfold larger than that of strain 2362, the strain currently used in VectoLex, a commercial mosquito larvicide. Comparison of the regions downstream from the bin operon in these two strains showed that strain 2362 contained a 1.6-kb region with four orf genes not found in strain 2297. Insertion of a 1.1-kb portion of this region from strain 2362 by homologous recombination downstream from the bin operon in strain 2297 reduced Bin toxin production by 50 to 70% and toxicity to fourth-instar larvae of Culex quinquefasciatus by 68%. These results suggest that the 1.6-kb region downstream from the bin operon in B. sphaericus 2362 is responsible for the lower Bin yield and smaller crystal size characteristic of this strain.  相似文献   

18.
Two mosquitocidal toxins (Mtx) of Bacillus sphaericus, which are produced during vegetative growth, were investigated for their potential to increase toxicity and reduce the expression of insecticide resistance through their interactions with other mosquitocidal proteins. Mtx-1 and Mtx-2 were fused with glutathione S-transferase and produced in Escherichia coli, after which lyophilized powders of these fusions were assayed against Culex quinquefasciatus larvae. Both Mtx proteins showed a high level of activity against susceptible C. quinquefasciatus mosquitoes, with 50% lethal concentrations (LC50) of Mtx-1 and Mtx-2 of 0.246 and 4.13 μg/ml, respectively. The LC50s were 0.406 to 0.430 μg/ml when Mtx-1 or Mtx-2 was mixed with B. sphaericus, and synergy improved activity and reduced resistance levels. When the proteins were combined with a recombinant Bacillus thuringiensis strain that produces Cry11Aa, the mixtures were highly active against Cry11A-resistant larvae and resistance was also reduced. The mixture of two Mtx toxins and B. sphaericus was 10 times more active against susceptible mosquitoes than B. sphaericus alone, demonstrating the influence of relatively low concentrations of these toxins. These results show that, similar to Cyt toxins from B. thuringiensis subsp. israelensis, Mtx toxins can increase the toxicity of other mosquitocidal proteins and may be useful for both increasing the activity of commercial bacterial larvicides and managing potential resistance to these substances among mosquito populations.  相似文献   

19.
Fermenter-produced Bacillus sphaericus 2362 was formulated into a thick, dark flowable liquid concentrate containing 4.8×109 c.f.u./ml and charcoal as protector against ultraviolet light. The potencies of the formulation against L4 Culex pipiens quinquefasciatus before and after storage for 2 years were 5714 and 5862 International Toxic Units (ITU), respectively, when compared with a standardized B. sphaericus from the WHO at 1000 ITU. In field trials, treatment at 1.01/ha gave 96 to 100% control of mosquito larvae. B. sphaericus could be re-isolated in 5% of the samples 9 months after application.The authors are at the Department of Applied Microbiology & Brewing, Anambra State University of Technology, P.M.B. 5025, Awka, Nigeria.  相似文献   

20.
Summary Seven bacterial isolates from Ghana, IAB 763, IAB 769-1, IAB 769-2, IAB 774, IAB 871, IAB 872, IAB 881, are characterized as Bacillus sphaericus strains highly toxic to mosquito larvae. Most of them belong to serotype H6, except for IAB 881 and IAB 872, which belong pesrespectively to serotypes H3 and H48. Phenotypic characters of all these strains are identical to those of strains 2362 (serotype H5) and IAB 59 (serotype H6), used for comparison. Five strains out of seven produce final whole cultures and alkali-solubilized toxins, which have very high potency against Culex pipiens larvae. Their larvicidal power is similar to that of strains 2362 and IAB 59. By using polyclonal antibodies raised against 42- and 56-kDa toxic polypeptides of strain 2362, Western-blot of the alkali-solubilized toxins of these new five strains showed homologies. It is the first time that strains belonging to serotypes H3 and H48 have been found pathogenic to mosquito larvae, thus increasing to eight the number of toxic serotypes of B. sphaericus. Correspondence to: I. Thiery  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号