首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The diversity of species assemblages which occupy a basal position in the trophic pyramid (typically unicellular algae in aquatic environments) is known to influence the interaction with organisms of higher trophic levels. A laboratory feeding experiment was conducted with cultures of three benthic diatom species (Navicula phyllepta, Grammatophora marina and Cylindrotheca closterium) as primary producers and three harpacticoid copepod species (Harpacticus obscurus, Paramphiascella fulvofasciata and Tigriopus brevicornis) as grazers to evaluate the effects of food diversity (and concomitant food availability) on grazing selectivity. This kind of selectivity experiments is singular for benthic harpacticoid copepods as so far, information on food selection of harpacticoids is scarce.Uptake of a unispecific food source by a single copepod species decreased as food diversity (and concomitant overall food concentration) increased. All three consumers reacted similarly to changing food diversity, but exhibited strong species-specific responses to food identity i.e. which diatom was added was crucial. Irrespective of level of food diversity, H. obscurus took up high amounts of G. marina, whereas both P. fulvofasciata and T. brevicornis preferred C. closterium when given the choice between different diatoms. As for zooplanktonic taxa, this experiment showed that in lower benthic marine food webs both prey organisms (primary producers) and grazers play a very specific role. Diversity of food and its identity are of critical importance at the base of the trophic pyramid, influencing trophic transfer from primary producers over grazers to higher trophic levels.  相似文献   

2.
Copepods are known as important consumers of primary production and are eaten by larger animals. They therefore form a main link to higher trophic levels. While feeding pathways and specificity of planktonic copepods have been well studied, the selectivity of the benthic harpacticoid copepods is far less documented. A better knowledge of the functional ecology of harpacticoids as important grazers on primary producers may have consequences for the re-evaluation of basic energy flow in benthic ecosystems.We tested whether size selectivity for diatoms exists in harpacticoid copepods. We hypothesized that size selectivity of harpacticoid copepod species is strongly related to body size. Because of morphological constraints, we expected smaller copepods to prefer smaller diatoms while larger copepods should be able to consume both small and large diatoms. We tested this hypothesis in four harpacticoid copepod species of varied body size: Tigriopus brevicornis, Harpacticus obscurus, Amphiascus minutus and Paramphiascella fulvofasciata. As food source we used two 13C labelled strains of the benthic diatom Seminavis robusta with a four-fold difference in cell biovolume.Three out of four harpacticoid species showed size selectivity: H. obscurus and A. minutus preferred the larger Seminavis cells, while P. fulvofasciata selected the smaller Seminavis cells. Based on monoclonal treatments, there was no clear preference found for T. brevicornis although there was a small preference for large cells in the mixed treatments. Except for P. fulvofasciata, all species showed a lower uptake when offered the mixed diet (both small and large cells). Although most species showed a size selectivity, our results suggest that this selectivity was not related to their body size. However, the only species that ate significantly more of small diatoms was characterised by comparatively small mouthparts in relation to its body size.  相似文献   

3.
Harpacticoid copepods are known as important grazers on primary producers. The underlying factors for their food selectivity and grazing efficiency are however far from well known. For instance, their patchy distribution in the marine environment is well documented but how meiofaunal organisms cope with the spatial distribution/accessibility of the available food resources is less clear.In the present study a laboratory experiment was conducted to test the grazing efficiency of Paramphiascella fulvofasciata (Copepoda, Harpacticoida) on the epipelic diatom Seminavis robusta applied in recipients of different area and in various concentrations. Diatoms were enriched in the stable isotope 13C in order to trace food uptake and copepods were left to graze for 4 days.We found that the grazing efficiency of P. fulvofasciata was diatom concentration-dependent. A lower diatom uptake at lower diatom densities illustrated this clear functional response. On the contrary, there was no significant effect of the area per se where the copepods could graze upon. The lack of a significant effect of area is mainly due to the high variability in uptake that was recorded in some treatments. Although P. fulvofasciata is a very motile copepod, known as endobenthic and epibenthic species, it was able to concentrate on food uptake at the bottom of the experimental unit as there was no significant difference in uptake between treatments with different water heights in the units. In addition, it was found that a diatom concentration of about 140 000 cells/cm2 favours egg production of P. fulvofasciata.  相似文献   

4.
In this study, an ecomorphological perspective is used to examine the role of feeding morphology in shaping patterns of food resource use and coexistence for Awaous guamensis and Sicyopterus stimpsoni, two native gobies (Gobiidae) which inhabit mountainous streams of the high Hawaiian Islands. Using data from underwater census, gut content analysis, and benthic sampling, I determined that A. guamensis, the generalist, had nearly unchallenged use of invertebrate foods. Overlap in fitness for algal use, however, resulted in a partitioning of benthic algae, with A. guamensis having domain over most green algae (43.0% of diet), whereas S. stimpsoni the algal specialist, fed predominantly on blue-green algae (22.6% of diet) and diatoms (54.2% of diet). Cladophora sp. (Chlorophyta) and pennate diatoms (Chrysophyta) were determined to be the primary algal foods of A. guamensis and S. stimpsoni, respectively, and were utilized in a mutually exclusive manner with other secondary algal foods depending upon availability. Heterogeneity, found in the abundance and composition of algal and invertebrate foods in the benthic landscape both spatially and seasonally, may be regulated by stream flow and periodic disturbance. This changing mosaic of foods is suggested as having provided opportunities for minimizing competitive conflicts and enhancing the potential for stream species to coexist. Competition for preferred foods, created by inter-specific overlap in ecomorphology and spurred by constraints placed on food diversity by the extreme geographic isolation of the Hawaiian Islands, is hypothesized as having played an evolutionary role in shaping resource use patterns which facilitate coexistence.  相似文献   

5.
Here, we report insights from the compilation and analysis of data on marine calanoid copepod feeding rates in the ocean. Our study shows that food availability and body weight are major factors shaping copepod feeding rates in the field, with a relatively minor role of temperature. Although the maximal feeding rates of copepods that are observed in the field agree with the well-known 3/4 of body size scaling rule for animals, copepod feeding in the oceans is typically limited and departs from this rule. Ciliates and dinoflagellates appear to be highly relevant in the composition of copepod diets, and this represents an indirect increase in the flux of primary production that is likely to reach the upper trophic levels; this contribution is higher in the less productive systems and may help to explain accounts of proportionally higher standing stocks of copepods supported per unit of primary producer biomass in oligotrophic environments. Contrary to common belief, diatoms emerge from our dataset as small contributors to the diet of copepods, except in some very productive ecosystems. We have also evaluated the bias in the estimation of copepod grazing rates due to within-bottle trophic cascade effects caused by the removal of microheterotrophs by copepods. This release of microzooplankton grazing pressure accounts for a relevant, but moderate, increase in copepod grazing estimates (ca. 20–30%); this bias has an effect on both the carbon flux budgets through copepods and on our view of their diet composition. However, caution is recommended against the indiscriminate use of corrections because they may turn out to be overestimates of the bias. We advise that both uncorrected and corrected grazing rates should be provided in future studies, as they probably correspond to the lower and upper boundaries of the true grazing rates.  相似文献   

6.
Feeding activity, selective grazing and the potential grazing impact of two dominant grazers of the Polar Frontal Zone, Calanus simillimus and Rhincalanus gigas, and of copepods < 2 mm were investigated with incubation experiments in the course of an iron fertilized diatom bloom in November 2000. All grazers were already actively feeding in the low chlorophyll waters prior to the onset of the bloom. C. simillimus maintained constant clearance rates and fed predominantly on diatoms. R. gigas and the small copepods strongly increased clearance and ingestion of diatoms in response to their enhanced availability. All grazers preyed on microzooplankton, most steadily on ciliates, confirming the view that pure herbivory appears to be the exception rather than the rule in copepod feeding. The grazers exhibited differences in feeding behavior based on selectivity indices. C. simillimus and R. gigas showed prey switching from dinoflagellates to diatoms in response to the phytoplankton bloom. All grazers most efficiently grazed on large diatoms leading to differences in daily losses for large and small species, e.g. Corethron sp. or Thalassionema nitzschioides. Species-specific diatom mortality rates due to grazing suggest that the high feeding activity of C. simillimus prior to and during the bloom played a role in shaping diatom population dynamics.  相似文献   

7.
High-speed microcinematography was used to examine the feedingbehavior of the marine copepod Eucalanus elongatus in a rangeof concentrations of algal monocultures and mixtures. Two celltypes were offered, the 13-µm diatom Thalassiosira weissflogii,which is primarily accumulated passively by low amplitude flappingof the second maxillae, and the 20 450-µm diatom Rhizosoleniaalata, which is actively captured by detection of and orientedresponse to individual cells. E. elongatus rapidly switchedback and forth between these two capture modes in mixtures ofboth diatoms, and flapped the second maxillae at low amplitudesregardless of the absolute or relative abundance of small andlarge cells. However, copepods in both monocultures and mixturesaltered the duration and/or rate of flapping of the feedingappendages with changes in algal concentration, with maximumactivity levels occurring at intermediate concentrations. Themarked reduction in feeding motions observed at the lowest algalconcentrations supports results from traditional grazing studiesand optimal foraging models, and may conserve energy duringprolonged perods of low food availability in continental slopewaters.  相似文献   

8.
On coral reefs, the epilithic algal matrix (EAM) is widely recognised as an important resource for herbivorous and detritivorous fishes. In comparison, little is known of the interaction between benthic carnivores and the EAM, despite the abundance of Crustacea within the EAM. The trophic importance of the EAM to fishes was investigated in Pioneer Bay, Orpheus Island, Great Barrier Reef. Fish densities were quantified using visual and clove oil censuses, and gut content analyses conducted on abundant fish species. Crustaceans were found to be an important dietary category, contributing between 49.5 and 100 % of the gut contents, with harpacticoid copepods being the dominant component. Of the benthic carnivores, the goby Eviota zebrina was found to consume the most harpacticoids with a mean of 249 copepods m?2 day?1. This represents approximately 0.1 % of the available harpacticoid population in the EAM. In a striking comparison, herbivorous parrotfishes were estimated to consume over 12,000 harpacticoids m?2 day?1, over 27 times more than all benthic carnivores surveyed, representing approximately 5.3 % of the available harpacticoid copepod population each day. The high consumption of harpacticoid copepods by benthic carnivores and parrotfishes indicates that harpacticoids form an important trophic link between the EAM and higher trophic levels on coral reefs.  相似文献   

9.
The diet of the amphipod Corophium volutator (Pallas) living on extensive intertidal mud flats in the Bay of Fundy, eastern Canada, was investigated by direct and indirect methods. Microscopic observation of gut contents revealed macrophyte detritus but few diatom frustules. Laboratory cultures showed good survival on a diet of benthic diatoms, while on a diet of Spartina detritus survival was poor, although significantly better than the survival of starved animals. The ratios of gut enzyme activities, amylase to protease and amylase to laminarinase, changed markedly with the season. In summer the ratio was similar to that of animals cultured on a diet of benthic diatoms; in spring it resembled that of animals cultured on Spartina detritus, while in winter it was similar to that of starved animals. It is concluded that in summer, rapid growth is made possible by feeding on benthic diatoms, while Spartina detritus is an inferior food source which aids survival at other times of the year.  相似文献   

10.
11.
The objective of this study was to compare the influence of the diets of two diatoms, Navicula sp. (benthic) and Thalassiosira fluviatilis (planctonic), on the development, fecundity and survival of the harpacticoid copepod Tisbe biminiensis. In order to determine the optimal concentration of food, 35 egg-bearing females were submitted to six algal concentrations and controls (without food). After 24 h, the content of the recipients was fixed with 4% formalin and then fecal pellets produced by each female were counted and measured. The larval development was studied by surveying 50 nauplii on each diet individually until the adult stage, at intervals of 6 h. The cast exoskeletons were removed to count the number of segments and for measurement. The fecundity was obtained counting the naupliar production every 48 h of groups containing 10 females in different algal concentrations in both diets. The diet influence on fecundity was tested by submitting four groups of 10 females fed on optimal algal concentrations based on the fecal pellet experiments. In the Navicula sp. concentration of 0.4 μg Chl-a/ml, considered to be optimal for fecal pellets production, the diatoms were shown toxic, resulting in a low survival rate and inhibiting the egg production of copepods. The optimal concentration considering fecundity was estimated to be 0.1 μg Chl-a/ml for both diets. Copepods fed on Navicula sp. presented a faster development rate and higher naupliar production compared to copepods fed on T. fluviatilis. Size and survival did not vary significantly among diets. The algal concentration interfered significantly in the reproductive success of females. Both very low and very high algal concentrations reduced reproductive success. Concluding, the benthic diatom Navicula sp. was more favorable to the copepod T. biminiensis than the planktonic diatom T. fluviatilis.  相似文献   

12.
Distributional and feeding relationships of harpacticoid copepods and their microbial prey were examined in a tidal channel at Great Sippewissett Marsh. A horizontal zonation of photosynthetic microorganisms was composed of: 1) a diatom area; 2) a purple sulfur bacterial (Thiocapsa sp.) area; and 3) a clear area. Four species of harpacticoid copepods were associated with given areas. Leptocaris brevicornis occurred in very high densities in the diatom area but in relatively low densities in other areas. Mesochra lilljeborgi occurred in significantly higher densities in the purple and clear areas.Feeding experiments, using resident microbial flora labelled with NaH14CO3 and 3H-thymidine, were conducted to determine which foods are 1) ingested but simply pass through the gut and 2) ingested, and retained. These experiments indicated that L. brevicornis ingested diatoms and the heterotrophs associated with the diatoms, but only retained the heterotrophic portion. Microscopic examination indicated that diatoms were passed out intact in feces. Oscillatoria sp. (cyanobacterium) was not ingested. Mesochra lilljeborgi ingested Spirulina sp. (cyanobacterium), Thiocapsa sp., and the heterotrophs associated with Thiocapsa but only retained the Thiocapsa label.These data for harpacticoids suggest that spatial distributions of meiofauna may be closely coupled with microbial food organisms which they consume. Also, that while several microbial foods may be ingested, only certain microbes are digested and assimilated as a food resource, further indicating the complexity of feeding relationships among the meiofauna.  相似文献   

13.
1. The value of algal fatty acids (FA) as diet biomarkers for benthic harpacticoid copepods was investigated. A high proportion of 18:1ω9 and 18:2ω6 FA was observed in the lipid reserve fraction of copepods fed with cyanobacteria. In contrast, a high proportion of 16:1ω7 and ω3 FA (including eicosapentaenoic) was present in the lipid reserve fraction of copepods grown on diatoms. 2. Copepods that were grown on cyanobacteria showed reduced survival and took 26% more time to develop from the first copepodid stage to adult than copepods that were grown on diatoms. Copepods feeding on the cyanobacteria showed reduced FA content when compared with animals fed with diatoms. This reduction in FA content was more pronounced in the apolar lipid fraction (mainly reserve lipids) than in the polar (mainly structural) lipid fraction. 3. The FA profiles of algae were used to calculate a function discriminating between diatoms and cyanobacteria. This function was applied to the FA profiles in the reserve lipid fraction of copepods and correctly classified copepod diet. 16:1ω7, 18:2ω6 and 20:5ω3 were the most important FA in the discriminant function. The suitability of this chemometric method to infer copepod diet was further tested by using algal class FA data from literature to derive the discriminant functions. The correct classification of the diet when the functions were applied to FA composition of the copepod reserve lipids suggests that this method may be employed in trophic web studies. 18:3ω3, 18:1ω9 and 16:1ω7 were the most important FA in the functions discriminating diatoms, cyanobacteria and green algae. The identification and quantification of the whole suit of 16:1ω7, 18:1ω9, 18:2ω6, 18:3ω3 and 20:5ω3 in trophic web studies is therefore of paramount importance to infer diet origin of aquatic herbivores. 4. The FA profile of copepod polar lipids did not reflect that of the diet. The presence of long chain polyunsaturated FAs in the polar lipid fraction of copepods feeding on the cyanobacterium suggests that C18 FAs from the diet may be elongated and desaturated by the copepod. The ability to elongate and desaturated FAs may reduce the importance of some FAs as diet biomarkers while it may turn the copepods into valuable trophic intermediaries in transferring organic matter from microorganisms to higher trophic levels.  相似文献   

14.
Fecal pellets make up a significant fraction of the global flux of organic matter in oceans, and the associated bacterial communities in particular are a potential food source for marine organisms. However, these communities remain largely unknown. In the present study, the bacterial communities on fecal pellets of the benthic copepod Paramphiascella fulvofasciata feeding on the diatoms Navicula phyllepta and Seminavis robusta were analyzed. The aim of this study was to characterize the bacterial communities associated with the diatoms and the fecal pellets by means of DGGE profiling. Furthermore, isolated bacteria were characterized by means of partial 16S rRNA gene sequencing. The composition of the bacterial microflora on fecal pellets was studied in terms of the effect of the original food source, the age of the fecal pellets and the copepod’s identity. Alphaproteobacteria, Flavobacteria, and Bacilli were found on the fecal pellets; whereas on diatoms, exclusively Gammaproteobacteria were identified. Especially after eating N. phyllepta, there was an important increase in bacterial diversity, although the diatom N. phyllepta harbored a less diverse bacterial community than S. robusta. Our data suggest that the additional bacteria originate from the copepod’s digestive tract and largely depends on the initial food source.  相似文献   

15.
Grazing by southern mullet, Liza richardsoni (Smith), on surf diatoms occurring in bloom concentrations off an ocean-exposed East Cape beach, South Africa, was investigated. Field observations and stomach content analysis demonstrated that surf diatoms taken from the air-water interface were a principal source of food. A qualitative examination of stomach contents revealed a feeding transition from planktonic carnivore in juveniles to a diet consisting entirely of surf diatoms in larger fishes. This change in diet commonly occurred at a standard length of 50–135 mm. Fish larger than 135 mm fed entirely on surf diatoms which were ingested together with large quantities of beach sediment. Grazing on surf diatoms only took place during daylight hours. Energy, ash, protein, fat and carbohydrate content determinations indicate a high food quality of surf diatoms. It is concluded that surf diatom accumulations form a richly concentrated and reliable food source of high nutritional quality for these fish. Possible widespread grazing on surf diatoms by mullets is considered.  相似文献   

16.
In order to assess feeding selectivity in freshwater zooplankton, we conducted feeding trials using Diaptomus minutus isolated from two Wisconsin lakes. Copepods were fed an algal assemblage comprised of an equal biomass of a centric diatom, a cryptomonad and a coccal green alga. The total amounts of photopigments were tracked using high-performance liquid chromatography. The removals of carotenoids and a-type phorbins (chlorophyll a and phaeopigments) from feeding suspensions were compared with their presence in the guts of animals, in fecal pellets, and in the final suspension. Diaptomus minutus generally removed either the diatoms primarily or all three algal cells equally. These removals were not reflected in gut extracts of the animals, however, where alloxanthin (marker of cryptomonads) was always present, but where fucoxanthin and diadinoxanthin (markers of diatoms) were never observed. Pigment disappearance was variable for total a-type phorbins, but frequently >90% for carotenoids, particularly for fucoxanthin and diadinoxanthin. Phaeophytin a was the major a-type phorbin detected after gut passage. Our results indicate that evaluations of zooplankton grazing which assume that algal carotenoids remain detectable throughout gut passage must be made with substantial caution and that differences in pigment processing are likely to occur among zooplankton species. Furthermore, grazing experiments designed to evaluate decreases of specific pigments in feeding suspension, rather than their appearance in animals' guts, may prove a more valuable approach to understanding the feeding selectivity of copepods.   相似文献   

17.
Grazing experiments using 14C and an analysis of fecal pellets and gut contents established that the gammaridean amphipod, Talorchestia longicornis Say, ingests blue-green algae on algal mats in a Massachusetts salt marsh. This grazing had a measurable effect on the lower algal mat, where the density of T. longicornis was high. Exclusion of amphipods resulted in increases in chlorophyll a content, carbon incorporation, and nitrogen fixation. This effect was not seen on the upper mat where T. longicornis was less abundant. The assimilation efficiency of T. longicornis feeding on a diet consisting mainly of blue-green algae was surprisingly high (67 %) considering that blue-green algae are usually considered as a poor quality food for herbivores. The population of T. longicornis seems to be annual, with growth of the overwintered juveniles in spring and early summer.  相似文献   

18.
The influence of diatoms on the reproduction and naupliar development of Acartia bifilosa was investigated under laboratory conditions, comparing initial in situ values and laboratory-food treatments. Egg production by A. bifilosa was significantly reduced by one diatom diet (Phaeodactylum tricornutum: Pt) and by two non-diatom diets (Platymonas subordiformis: Ps and Nannochloropsis oculata: No). It was less affected by the other diatom diet (Skeletonema costatum: Sc) or by two mixed-food treatments (D-mix and DG-mix), composed of two diatoms (Pt, Sc) and four species (Pt, Sc, Ps and No), respectively. The negative effect of Pt was eliminated when adult copepods were offered mixed-food diets. There were no significant differences between the hatching success values observed in filtered seawater and in algal exudates, indicating that diatoms did not produce active dissolved toxic substances under the different food concentrations tested. The mortality rate of nauplii was higher with Pt than the other diets, suggesting that this diatom species had a negative effect on egg production, hatching success and naupliar survival simultaneously. Compared to other diets, No and Pt were not beneficial food sources for reproduction and for female and larval survival.  相似文献   

19.
Small-bodied cladocerans and cyclopoid copepods are becoming increasingly dominant over large crustacean zooplankton in eutrophic waters where they often coexist with cyanobacterial blooms. However, relatively little is known about their algal diet preferences. We studied grazing selectivity of small crustaceans (the cyclopoid copepods Mesocyclops leuckarti, Thermocyclops oithonoides, Cyclops kolensis, and the cladocerans Daphnia cucullata, Chydorus sphaericus, Bosmina spp.) by liquid chromatographic analyses of phytoplankton marker pigments in the shallow, highly eutrophic Lake Võrtsjärv (Estonia) during a seasonal cycle. Copepods (mainly C. kolensis) preferably consumed cryptophytes (identified by the marker pigment alloxanthin in gut contents) during colder periods, while they preferred small non-filamentous diatoms and green algae (identified mainly by diatoxanthin and lutein, respectively) from May to September. All studied cladoceran species showed highest selectivity towards colonial cyanobacteria (identified by canthaxanthin). For small C. sphaericus, commonly occuring in the pelagic zone of eutrophic lakes, colonial cyanobacteria can be their major food source, supporting their coexistence with cyanobacterial blooms. Pigments characteristic of filamentous cyanobacteria and diatoms (zeaxanthin and fucoxanthin, respectively), algae dominating in Võrtsjärv, were also found in the grazers’ diet but were generally avoided by the crustaceans commonly dominating the zooplankton assemblage. Together these results suggest that the co-occurring small-bodied cyclopoid and cladoceran species have markedly different algal diets and that the cladocera represent the main trophic link transferring cyanobacterial carbon to the food web in a highly eutrophic lake.  相似文献   

20.
Cyanobacteria blooms are an increasing problem in temperate freshwater lakes, leading to reduced water quality and in some cases harmful effects from toxic cyanobacteria species. To better understand the role of zooplankton in modulating cyanobacteria blooms, from 2008 to 2010 we measured water quality and plankton abundance, and measured feeding rates and prey selectivity of the copepod Diacyclops thomasi before, during and following summertime cyanobacteria blooms in a shallow, eutrophic lake (Vancouver Lake, Washington, USA). We used a combined field and experimental approach to specifically test the hypothesis that copepod grazing was a significant factor in establishing the timing of cyanobacteria bloom initiation and eventual decline in Vancouver Lake. There was a consistent annual succession of zooplankton taxa, with cyclopoid copepods (D. thomasi) dominant in spring, followed by small cladocerans (Eubosmina sp.). Before each cyanobacteria bloom, large cladocerans (Daphnia retrocurva, Daphnia laevis) peaked in abundance but quickly disappeared, followed by brief increases in rotifers. During the cyanobacteria blooms, D. thomasi was again dominant, with small cladocerans abundant in autumn. Before the cyanobacteria blooms, D. thomasi substantially consumed ciliates and dinoflagellates (up to 100% of prey biomass per day), which likely allowed diatoms to flourish. A shift in copepod grazing toward diatoms before the blooms may have then helped to facilitate the rapid increase in cyanobacteria. Copepod grazing impact was the highest during the cyanobacteria blooms both years, but focused on non-cyanobacteria prey; copepod grazing was minimal as the cyanobacteria blooms waned. We conclude that cyclopoid copepods may have an indirect role (via trophic cascades) in modulating cyanobacteria bloom initiation, but do not directly contribute to cyanobacteria bloom decline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号