首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The construction of artificial seaweed beds in the intertidal zone is a challenge due to extreme levels of physical stress. In order to provide a basis for the construction using the dispersal of microscopic juveniles, a three-way factorial experimental design was used to evaluate the tolerance of Sargassum thunbergii germlings shortly released from fertile thalli to temperature, salinity and desiccation in this study. Results revealed that temperature, salinity and desiccation significantly affected the growth and survival of germlings. Germlings showed rapid growth with relative growth rate (RGR, % day−1) over 16% when cultured at 25 °C and full immersion in normal seawater. Although growths of germlings subjected to moderate conditions were significantly inhibited, RGRs over 13% were obtained. The RGRs of germlings below 10% were observed only at 35 °C and 9 h desiccation treatments. In comparison to growth, survival was less affected by physical stress. Germlings showed low mortalities below 10% under appropriate conditions (25 °C and 30 °C combined with full immersion), and below 60% under moderate conditions, by the end of experiment. However, the mortality rates increased to over 90% under extreme conditions (9 h desiccation and 35 °C combined with full immersion in salinity of 12). These results showed that S. thunbergii germlings had high tolerance to physical stresses. In addition to the main effects, both two-way and three-way interactions between temperature, salinity and desiccation were significant. Based on the magnitude of effect, desiccation was the predominant factor affecting both growth and survival. According to the results, construction of artificial tanks in natural habitat to minimize desiccation may be an effective strategy for S. thunbergii restoration using germlings.  相似文献   

2.
Freezing tolerance is an important characteristic for baker’s yeast, Saccharomyces cerevisiae, as it is used to make frozen dough. The ability of yeast cells to survive freezing is thought to depend on various factors. The purpose of this work was to study the viability of yeast cells during the freezing process. We examined factors potentially affecting their survival, including the growth phase, ice-seeding temperature, intracellular trehalose content, freezing period, and duration of supercooling. The results showed that the ice-seeding temperature significantly affected cell viability. In the stationary phase, trehalose accumulation did not affect the viability of yeast cells after brief freezing, although it did significantly affect the viability after prolonged freezing. In the log phase, the ice-seeding temperature was more important for cell survival than the presence of trehalose during prolonged freezing. The importance of increasing the extracellular ice-seeding temperature was verified by comparing frozen yeast survival rates in a freezing test with ice-seeding temperatures of −5 °C and −15 °C. We also found that the cell survival rates began to increase at 3 h of supercooling. The yeast cells may adapt to subzero temperatures and/or acquire tolerance to freezing stress during the supercooling.  相似文献   

3.
1. The effect of cold (5 °C) and warm (35 °C) storage on desiccation tolerance of cold-adapted Steinernema feltiae, intermediate S. carpocapsae and warm-adapted S. riobrave was evaluated at 5 and 35 °C.  相似文献   

4.
In order to effectively preserve green spores, which have relatively higher water content and lose viability more quickly than non-green spores, we studied the effect of desiccation level and storage temperature on Osmunda japonica spores. The water content of fresh spores was 11.20%. After 12 h desiccation by silica gel, the water content decreased to 6% but spore viability did not change significantly. As the desiccation continued, the decrease in water content slowed, but spore viability dropped. For almost all storage periods, the effects of storage temperature, desiccation level, and temperature × desiccation level were significantly different. After seven days of storage, spores at any desiccation level stored at 4 °C obtained high germination rates. After more than seven days storage, liquid nitrogen (LN) storage obtained the best results. Storage at −18 °C led to the lowest germination rates. Spores stored at room temperature and −18 °C all died within three months. For storage at 4 °C and in LN, spores desiccated 12 and 36 h obtained better results. Spores without desiccation had the highest germination rates after being stored at room temperature, but suffered the greatest loss after storage at −18 °C. These results suggest that LN storage is the best method of long-term storage of O. japonica spores. The critical water content of O. japonica spores is about 6% and reduction of the water content to this level improves outcome after LN storage greatly. The reason for various responses of O. japonica spores to desiccation and storage temperatures are discussed.  相似文献   

5.
Supercooling points (SCPs), lower lethal temperatures (LLTs), and the effect of short-term exposures (1 min) to low temperatures were examined in the adults of two stenothermal leptodirin species, Neobathyscia mancinii and Neobathyscia pasai (Coleoptera, Cholevidae). Specimens were collected from two caves in the Venetian Prealps (NE-Italy). Inter-species comparison highlighted lower values of SCP in N. mancinii (−7.1±0.9 °C) than in N. pasai (−6.4±0.3 °C), with no significant intersexual differences in both species. N. pasai (LLT50±SE=−16.96±2.30 °C; LLT100=−25.41 °C) tolerated short exposures to subzero temperatures better than N. mancinii (LLT50±SE=−4.89±1.08 °C; LLT100=−11.72 °C). According to the mortality and cumulative proportion of individual freezing curves (CPIF), SCPs and LLT100, N. pasai may be defined as “strongly freeze tolerant”, N. mancinii as “moderately freezing tolerant”. Overall, these results may justify the different in-cave habitat selection showed by the two species (N. pasai was abundant close to the entrance where the temperature is variable whereas N. mancinii was confined to the internal part of the cave where the temperature is constant throughout the year), and suggest hypotheses on the effects of such habitat selection on freeze tolerance strategy adopted. Finally, they give new insights into possible responses to climate changes in cave dwelling species.  相似文献   

6.
Lasia spinosa seeds were not dormant at maturity in early spring. The most favorable temperatures for germination were between 25 and 30 °C, and final percentage and rate of germination decreased with an increase or decrease in temperature. When L. spinosa seeds were transferred to 25 °C, after 60 days at 10 °C (where none of the seeds germinated), final germination increased from 0% to 78%. Seeds germinated to high percentage both in light and in dark, although dark germination took more than twice as long as in the light. During desiccation of seeds at 15 °C and 45% relatively humidity, moisture loss decreased exponentially from 2.02 to 0.13 g H2O g−1 dry wt within 16 days, and only a few seeds (12%) survived 0.13 g H2O g−1 dry wt moisture content. Seeds stored at 0.58 g H2O g−1 dry wt moisture content at four constant temperatures (4, 10, 15, and −18 °C) for up to 6 months exhibited a well-defined trend of decreasing viability with decreasing temperature. Thus, we concluded that freshly harvested L. spinosa seeds are non-dormant and recalcitrant. Also, the seeds with 0.58 g H2O g−1 dry wt moisture content could be effectively stored for a few months between 10 and 15 °C although the most appropriate temperature for wet storage appears to be 10 °C, as it is close to the minimum temperature for germination and so there will be less pre-sprouting compared to 15 °C.  相似文献   

7.
Cold tolerance and metabolic responses to freezing of three slug species common in Scandinavia (Arion ater, Arion rufus and Arion lusitanicus) are reported. Autumn collected slugs were cold acclimated in the laboratory and subjected to freezing conditions simulating likely winter temperatures in their habitat. Slugs spontaneously froze at about − 4 °C when cooled under dry conditions, but freezing of body fluids was readily induced at − 1 °C when in contact with external ice crystals. All three species survived freezing for 2 days at − 1 °C, and some A. rufus and A. lusitanicus also survived freezing at − 2 °C. 1H NMR spectroscopy revealed that freezing of body fluids resulted in accumulation of lactate, succinate and glucose. Accumulation of lactate and succinate indicates that ATP production occurred via fermentative pathways, which is likely a result of oxygen depletion in frozen tissues. Glucose increased from about 6 to 22 μg/mg dry tissue upon freezing in A. rufus, but less so in A. ater and A. lusitanicus. Glucose may thus act as a cryoprotectant in these slugs, although the concentrations are not as high as reported for other freeze tolerant invertebrates.  相似文献   

8.
Antifreeze proteins are a class of polypeptides produced by certain animals, plants, fungi and bacteria that permit their survival under the subzero environments. Ammopiptanthus nanus is the unique evergreen broadleaf bush endemic to the Mid-Asia deserts. It survives at the west edge of the Tarim Basin from the disappearance of the ancient Mediterranean in the Tertiary Period. Its distribution region is characterized by the arid climate and extreme temperatures, where the extreme temperatures range from − 30 °C to 40 °C. In the present study, the antifreeze protein gene AnAFP of A. nanus was used to transform Escherichia coli and tobacco, after bioinformatics analysis for its possible function. The transformed E. coli strain expressed the heterologous AnAFP gene under the induction of isopropyl β-D-thiogalactopyranoside, and demonstrated significant enhancement of cold tolerance. The transformed tobacco lines expressed the heterologous AnAFP gene in response to cold stress, and showed a less change of relative electrical conductivity under cold stress, and a less wilting phenotype after 16 h of − 3 °C cold stress and thawing for 1 h than the untransformed wild-type plants. All these results imply the potential value of the AnAFP gene to be used in genetic modification of commercially important crops for improvement of cold tolerance.  相似文献   

9.
The survival of aphids exposed to low temperatures is strongly influenced by their ability to move within and between plants and to survive exposure to potentially lethal low temperatures. Little is known about the physiological and behavioural limitations on aphid movement at low temperatures or how they may relate to lethal temperature thresholds. These questions are addressed here through an analysis of the thermal ecology of three closely related aphid species: Myzus persicae, a ubiquitous temperate zone pest, Myzus polaris, an arctic species, and Myzus ornatus, a sub-tropical species. Lower lethal temperatures (LLT50) of aphids reared at 15 °C were similar for M. persicae and M. polaris (range: −12.7 to −13.9 °C), but significantly higher for M. ornatus (−6.6 °C). The temperature thresholds for activity and chill coma increased with rearing temperature (10, 15, 20, and 25 °C) for all clones. For M. polaris and M. ornatus the slopes of these relationships were approximately parallel; by contrast, for M. persicae the difference in slopes meant that the difference between the temperatures at which aphids cease walking and enter coma increased by approximately 0.5 °C per 1 °C increase in rearing temperature. The data suggest that all three species have the potential to increase population sizes and expand their ranges if low temperature limitation is relaxed.  相似文献   

10.
11.
In order to preserve key activities or improve survival, insects facing variable and unfavourable thermal environments may employ physiological adjustments on a daily basis. Here, we investigate the survival of laboratory-reared adult Cydia pomonella at high or low temperatures and their responses to pre-treatments at sub-lethal temperatures over short time-scales. We also determined critical thermal limits (CTLs) of activity of C. pomonella and the effect of different rates of cooling or heating on CTLs to complement the survival assays. Temperature and duration of exposure significantly affected adult C. pomonella survival with more extreme temperatures and/or longer durations proving to be more lethal. Lethal temperatures, explored between −20 °C to −5 °C and 32 °C to 47 °C over 0.5, 1, 2, 3 and 4 h exposures, for 50% of the population of adult C. pomonella were −12 °C for 2 h and 44 °C for 2 h. Investigation of rapid thermal responses (i.e. hardening) found limited low temperature responses but more pronounced high temperature responses. For example, C. pomonella pre-treated for 2 h at 5 °C improved survival at −9 °C for 2 h from 50% to 90% (p < 0.001). At high temperatures, pre-treatment at 37 °C for 1 h markedly improved survival at 43 °C for 2 h from 20% to 90% (p < 0.0001). We also examined cross-tolerance of thermal stressors. Here, low temperature pre-treatments did not improve high temperature survival, while high temperature pre-treatment (37 °C for 1 h) significantly improved low temperature survival (−9 °C for 2 h). Inducible cross-tolerance implicates a heat shock protein response. Critical thermal minima (CTmin) were not significantly affected by cooling at rates of 0.06, 0.12 and 0.25 °C min−1 (CTmin range: 0.3-1.3 °C). By contrast, critical thermal maxima (CTmax) were significantly affected by heating at these rates and ranged from 42.5 to 44.9 °C. In sum, these results suggest pronounced plasticity of acute high temperature tolerance in adult C. pomonella, but limited acute low temperature responses. We discuss these results in the context of local agroecosystem microclimate recordings. These responses are significant to pest control programmes presently underway and have implications for understanding the evolution of thermal tolerance in these and other insects.  相似文献   

12.
To understand the ecology and environmental tolerances of newly hatched larvae of the amphidromous fish Sicyopterus japonicus during their downstream migration, the salinity tolerance of eggs, 0-15 day old larvae, and adults, and the temperature tolerance, specific gravity and phototaxis of hatched larvae were examined. Tolerances of adults were measured as survival after a 24 h challenge in freshwater (FW), brackish water (1/3 SW) and seawater (SW). The survival rate of adult S. japonicus was 100% in FW and 1/3 SW, while none survived in SW. Hatching success of eggs (30 eggs each) was significantly higher in FW (mean: 73%) and 1/3 SW (73%) than in SW (19%). Tolerance of newly hatched larvae to salinity and temperature was investigated in different combinations of salinities (FW, 1/3 SW and SW) and temperatures (18, 23 and 28 °C). Larval survival was significantly different in each salinity and temperature. Survival rate was significantly higher in 1/3 SW than in FW and higher in SW than in FW at 23 °C and 28 °C. At the latter part of the experiment, there was no survival in FW and at 28 °C. Survival was higher in lower temperatures, but larval development did not occur in FW. Specific gravity of newly hatched larvae was 1.036 at 28 °C and 1.034 at 23 °C. When exposed to a light source on one side of an aquarium, larval distribution was not affected. Our results indicated larval S. japonicus are more adapted to brackish water and seawater than freshwater, while the adults and eggs are more adapted to freshwater and brackish water than seawater. This is consistent with their amphidromous life history with growth and spawning occurring in freshwater and the larval stage utilizing marine habitats.  相似文献   

13.
The two-spotted spider mite, Tetranychus urticae, is a worldwide pest species that overwinters as diapausing females. Cold hardening is presumed to start during diapause development to ensure the successful overwintering of this species. To address this hypothesis, we compared cold tolerance between non-diapausing and diapausing females. We measured supercooling point (SCP) and survival to acute cold stress by exposing the mites at a range of sub-zero temperatures (from −4 to −28 °C for 2 h). The mean SCPs of non-diapausing and diapausing females were −19.6±0.5 and −24.7±0.3 °C respectively, and freezing killed the mites. Diapausing females were significantly more cold tolerant than non-diapausing ones, with LT50 of −19.7 and −13.3 °C, respectively. Further, we also examined the effects of cold acclimation (10 d at 0 or 5 °C) in non-diapausing and diapausing females. Our findings indicated that diapause decreased SCP significantly, while cold acclimation had no effect on the SCP except for non-diapausing females that were acclimated at 5 °C. Acclimation at 5 °C enhanced survival to acute cold stress in diapausing and non-diapausing females, with LT50 of −22.0 and −17.1 °C, respectively. Altogether, our results indicate that T. urticae is a chill tolerant species, and that diapause and cold acclimation elevate cold hardiness in this species.  相似文献   

14.
This study reports temperature effects on paralarvae from a benthic octopus species, Octopus huttoni, found throughout New Zealand and temperate Australia. We quantified the thermal tolerance, thermal preference and temperature-dependent respiration rates in 1-5 days old paralarvae. Thermal stress (1 °C increase h−1) and thermal selection (∼10-24 °C vertical gradient) experiments were conducted with paralarvae reared for 4 days at 16 °C. In addition, measurement of oxygen consumption at 10, 15, 20 and 25 °C was made for paralarvae aged 1, 4 and 5 days using microrespirometry. Onset of spasms, rigour (CTmax) and mortality (upper lethal limit) occurred for 50% of experimental animals at, respectively, 26.0±0.2 °C, 27.8±0.2 °C and 31.4±0.1 °C. The upper, 23.1±0.2 °C, and lower, 15.0±1.7 °C, temperatures actively avoided by paralarvae correspond with the temperature range over which normal behaviours were observed in the thermal stress experiments. Over the temperature range of 10 °C-25 °C, respiration rates, standardized for an individual larva, increased with age, from 54.0 to 165.2 nmol larvae−1 h−1 in one-day old larvae to 40.1-99.4 nmol h−1 at five days. Older larvae showed a lesser response to increased temperature: the effect of increasing temperature from 20 to 25 °C (Q10) on 5 days old larvae (Q10=1.35) was lower when compared with the 1 day old larvae (Q10=1.68). The lower Q10 in older larvae may reflect age-related changes in metabolic processes or a greater scope of older larvae to respond to thermal stress such as by reducing activity. Collectively, our data indicate that temperatures >25 °C may be a critical temperature. Further studies on the population-level variation in thermal tolerance in this species are warranted to predict how continued increases in ocean temperature will limit O. huttoni at early larval stages across the range of this species.  相似文献   

15.
As an essential aspect of its invasive character in Europe, this study examined the cold hardiness of the harlequin ladybird Harmonia axyridis. This was done for field-collected populations in Belgium overwintering either in an unheated indoor or an outdoor hibernaculum. The supercooling point, lower lethal temperature and lower lethal time at 0 and −5 °C were determined. Possible seasonal changes were taken into account by monitoring the populations during each winter month. The supercooling point and lower lethal temperature remained relatively constant for the overwintering populations in the outdoor hibernaculum, ranging from −17.5 to −16.5 °C and −17.1 to −16.3 °C, respectively. In contrast, the supercooling point and lower lethal temperature of the population overwintering indoors clearly increased as the winter progressed, from −18.5 to −13.2 °C and −16.7 to −14.1 °C, respectively. A proportion of the individuals overwintering indoors could thus encounter problems surviving the winter due to premature activation at times when food is not available. The lower lethal time of field populations at 0 and −5 °C varied from 18 to 24 weeks and from 12 to 22 weeks, respectively. Morph type and sex had no influence on the cold hardiness of the overwintering adults. In addition, all cold tolerance parameters differed greatly between the laboratory population and field populations, implying that cold tolerance research based solely on laboratory populations may not be representative of field situations. We conclude from this study that the strong cold hardiness of H. axyridis in Europe may enable the species to establish in large parts of the continent.  相似文献   

16.
The hemlock looper, Lambdina fiscellaria, is an economically important insect pest of Canadian forests which overwinters as eggs. Although the hemlock looper causes extensive damages, no information on the mechanisms related to its cold tolerance is known. The objective of this study was to determine the effect of temperature and exposure duration on hemlock looper winter survival but also to identify seasonal supercooling capacity and cryoprotectant levels of three populations along a latitudinal gradient. As host plant may contribute to offspring overwintering success, cold tolerance of hemlock looper eggs from parents whose larvae were fed on three different tree species was also measured. Mean supercooling point (SCP) of hemlock looper eggs was lower than −30 °C from October through the following spring with values being as low as −47 °C in February. Trehalose was the most abundant sugar found in hemlock looper eggs with a peak concentration of 0.3 μg mg−1 DW−1. Glycerol, a polyol, was more often absent in eggs of the different populations and tree species tested in the study. When exposed to different temperature regimes for various periods of time, significant mortality of hemlock looper eggs occurred at higher temperatures than the mean SCP. Thus, hemlock looper could be considered as a chill tolerant species. No clear pattern of population and host plant effects on SCP and cryoprotectants was detected in this study. However, when exposed to different winter temperatures and exposure duration, hemlock looper from higher latitudes survived better (survival rates ranging between 0 and 89% at −20 °C) than those from lower latitudes (survival rates ranging between 0 and 56% at −20 °C). Our results may contribute to a better understanding of hemlock looper winter biology and thus facilitate predictions of outbreaks and range expansion.  相似文献   

17.
To examine the synergism of high temperature and sulfide on two dominant tropical seagrass species, a large-scale mesocosm experiment was conducted in which sulfide accumulation rates (SAR) were increased by adding labile carbon (glucose) to intact seagrass sediment cores across a range of temperatures. During the initial 10 d of the 38 d experiment, porewater SAR in cores increased 2- to 3-fold from 44 and 136 μmol L− 1 d− 1 at 28-29 °C to 80 and 308 μmol L− 1 d− 1 at 34-35 °C in Halodule wrightii and Thalassia testudinum cores, respectively. Labile C additions to the sediment resulted in SAR of 443 and 601 μmol L− 1 d− 1 at 28-29 °C and 758 to 1,557 μmol L− 1 d− 1 at 34-35 °C in H. wrightii and T. testudinum cores, respectively. Both T. testudinum and H. wrightii were highly thermal tolerant, demonstrating their tropical affinities and potential to adapt to high temperatures. While plants survived the 38 d temperature treatments, there was a clear thermal threshold above 33 °C where T. testudinum growth declined and leaf quantum efficiencies (Fv/Fm) fell below 0.7. At this threshold temperature, H. wrightii maintained shoot densities and leaf quantum efficiencies. Although H. wrightii showed a greater tolerance to high temperature, T. testudinum had a greater capacity to sustain biomass and short shoots under thermal stress with labile C enrichment, regardless of the fact that sulfide levels in the T. testudinum cores were 2 times higher than in the H. wrightii cores. Tropical seagrass tolerance to elevated temperatures, predicted in the future with global warming, should be considered in the context of the sediment-plant complex which incorporates the synergism of plant physiological responses and shifts in sulfur biogeochemistry leading to increased plant exposure to sulfides, a known toxin.  相似文献   

18.
Lecanora muralis (Schreb.) Rabenh. is a ubiquitous epilithic crustose lichen of the temperate climate. It is well studied in terms of diel and annual carbon budget and productivity with continuous long-term observations in the field in 1995/96 by Otto L. Lange, Würzburg, and collaborators. However, these earlier studies left open the question to which extent the lichen is desiccation tolerant and if desiccation tolerance might possibly limit photosynthetic activity. In present study measurements of chlorophyll fluorescence parameters were performed to assess photosynthetic activity under various daily weather conditions throughout the year and recovery from desiccation after various periods of dryness in ambient air. Under any weather conditions, including strong frost for several days with night-temperatures around −15 °C and strong heat of several days with day-temperatures around 35 °C, the lichen was fully photosynthetically competent after wetting the samples for 15 min by submersion in water when they were dry in the field in the absence of actual incident precipitation. Chlorophyll fluorescence parameters were identical under all weather conditions sampled. A sample kept dry in ambient air for 37 days showed full recovery of chlorophyll fluorescence parameters after wetting for 30 min. Samples desiccated for longer periods up to 155 days took longer wetting times of about 300 min and recovered only partially but nevertheless showed active photosynthetic electron transport. Of 17 samples desiccated for 177–178 days only three recovered after rewetting for several days. It is concluded that the desiccation tolerance of L. muralis is sufficient to overcome dry spells of duration as it normally occurs in its natural environment. Desiccation tolerance is not likely to limit carbon budget and productivity.  相似文献   

19.
The myxozoan, Tetracapsuloides bryosalmonae, exploits freshwater bryozoans as definitive hosts, occurring as cryptic stages in bryozoan colonies during covert infections and as spore-forming sacs during overt infections. Spores released from sacs are infective to salmonid fish, causing the devastating Proliferative Kidney Disease (PKD). We undertook laboratory studies using mesocosm systems running at 10, 14 and 20 °C to determine how infection by T. bryosalmonae and water temperature influence fitness of one of its most important bryozoan hosts, Fredericella sultana, over a period of 4 weeks. The effects of infection were context-dependent and often undetectable. Covert infections appear to pose very low energetic costs. Thus, we found that growth of covertly infected F. sultana colonies was similar to that of uninfected colonies regardless of temperature, as was the propensity to produce dormant resting stages (statoblasts). Production of statoblasts, however, was associated with decreased growth. Overt infections imposed greater effects on correlates of host fitness by: (i) reducing growth rates at the two higher temperatures; (ii) increasing mortality rates at the highest temperature; (iii) inhibiting statoblast production. Our results indicate that parasitism should have a relatively small effect on host fitness in the field as the negative effects of infection were mainly expressed in environmentally extreme conditions (20 °C for 4 weeks). The generally low virulence of T. bryosalmonae is similar to that recently demonstrated for another myxozoan endoparasite of freshwater bryozoans. The unique opportunity for extensive vertical transmission in these colonial invertebrate hosts couples the reproductive interests of host and parasite and may well give rise to the low virulence that characterises these systems. Our study implies that climate change can be expected to exacerbate PKD outbreaks and increase the geographic range of PKD as a result of the combined responses of T. bryosalmonae and its bryozoan hosts to higher temperatures.  相似文献   

20.
Polar amplification of global warming has led to an average 2 °C rise in air temperatures in parts of the polar regions in the last 50 years. Poikilothermic ectotherms that are found in these regions, such as Collembola and mites, may therefore be put under pressure by changing environmental conditions. However, it has also been suggested that the thermal sensitivity of invertebrates declines with higher latitudes and, therefore, that polar ectotherms may not be at risk. In the current study, the heat tolerance and physiological plasticity to heat stress of two well-studied Antarctic invertebrates, the collembolan, Cryptopygus antarcticus, and the mite, Alaskozetes antarcticus, were investigated. Both species showed considerable heat tolerance, with each having an Upper Lethal Temperature (ULT) above 35 °C (1 h exposure). These species were also able to survive for over 43 d at 10 °C and for periods of 5–20 min at 40 °C. Across all experimental procedures, A. antarcticus possessed a somewhat greater level of heat tolerance than C. antarcticus. Water loss during short duration exposures did not differ between the two species at 30, 35 and 40 °C, suggesting that the greater tolerance of A. antarcticus over this timescale was not due to higher desiccation resistance. Physiological plasticity was investigated by testing for Rapid Heat Hardening (RHH) and long-term acclimation. RHH was observed to a small degree in both species at a warming rate of 0.5 °C min−1, and also 0.2 °C min−1 in A. antarcticus alone. Longer-term acclimation (1 week at 10 °C) did not enhance the heat tolerance of either species. Even with this limited physiological plasticity, the results of this study indicate that C. antarcticus and A. antarcticus have capacity in their heat tolerance to cope with current and future environmental extremes of high temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号