首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Six types of hemocytes were found in Agallia constricta leafhoppers: plasmatocytes, spherule cells, granular hemocytes, adipohemocytes, oenocytoids, and prohemocytes. Plasmatocytes, spherule cells, and granular hemocytes accounted for 90–95% of all hemocytes in numphs and adult leafhoppers. As the insect aged from second- and third-instar nymphs to 7- and 8-week-old adults, there was a significant decrease in plasmatocytes in healthy leafhoppers compared to wound tumor virus-infected insects. In contradistinction, there were more granular and spherule hemocytes in healthy leafhoppers than in virus-infected ones as the insects aged. In general, there were more prohemocytes in infected than in healthy leafhoppers. Plasmatocytes from 4- to 8-week-old, infected leafhoppers contained large irregularly shaped, cytoplasmic inclusions. Electron microscopy of these cells showed that the inclusions were either large accumulations of wound tumor virus particles or virus-free electron dense bodies.  相似文献   

2.
The morphological features of the hemocytes of the crustacean Ligia exotica are similar to hemocytes of insects and millipedes. Jones system of hemocyte classification is extended to crustacean hemocytes. As in insects, seven classes of hemocytes, identified as prohemocytes, plasmatocytes, granular hemocytes, cystocytes, oenocytoids, spherule cells and adipohemocytes, occur. The prohemocytes can be subdivided into five categories that probably represent the precursor of major cell types. The structural and chemical features of other major cell classes are distinct and support the concept of Jones ('62) that these types might have different lineages and might not be capable of transforming into one another. Some of the prohemocytes, plasmatocytes and granular hemocytes are amoeboid. Cystocytes do not bring about any visible plasma coagulation similar to their counterpart in millipedes. Oneocytoids and adipohemocytes are rare. Plasmatocytes, cystocytes and oenocytoids occur in conglomerates, the significance of which is discussed. The cell types are compared with those of the hemocytes of other crustaceans. It is suggested that the nomenclature based on morphological characters is more suited for crustacean hemocytes than a nomenclature based on behavioural and physiological characters.  相似文献   

3.
Insect hemocytes have historically been identified on the basis of morphology, ultrastructure and hypothesized function. Among insects in the order Lepidoptera, five hemocyte classes are usually recognized: granular cells, plasmatocytes, spherule cells, oenocytoids and prohemocytes. We have generated a panel of monoclonal antibodies (mAbs) against hemocytes of the moth Pseudoplusia includens. In this study, hemocyte identification using 16 different mAbs was compared to identification methods using morphological characters. Three main categories of mAb binding activity were identified: (1) mAbs that specifically labeled only one morphological class of hemocytes, (2) mAbs that labeled granular cells and spherule cells, and (3) mAbs that labeled plasmatocytes and oenocytoids. With one exception, none of the antibodies bound to other tissues in P. includens. However, certain mAbs that specifically labeled granular cells and/or spherule cells in separated hemocyte populations also labeled plasmatocytes co-cultured with granular cells or cultured in granular cell conditioned medium. Overall, our results suggest that granular cells are antigenically related to spherule cells, and that plasmatocytes are antigenically related to oenocytoids. The use of mAbs as hemocyte markers are discussed.  相似文献   

4.
Reticulitermes flavipes workers were topically inoculated with ≈10,000 conidia of the entomopathogenic fungus Metarhizium anisopliae. After being kept in groups of 20 individuals for 1-9 d, histopathological examination showed that termites had an individual immune reaction. The nodule formation at the point of entrance of the fungal hyphae was identified as a cellular encapsulation and the different steps in the nodule formation are described. The relative number of hemocytes per termite increased 24 h after fungal exposure and remained high in the hemolymph for at least 3 d before decreasing back to pre-exposure levels. The role of an individual immune cellular reaction in social insects is discussed.  相似文献   

5.
Local microbial tolerance was investigated in a murine model of peritonitis. Peritoneal bacterial burden and inflammatory cytokine concentrations were determined at different times, within 48 h after infection. Peritoneal macrophages were harvested from naïve mice or from mice 48 h after infection and underwent ex vivo stimulation with different concentrations of Klebsiella. Cytokine secretion was determined in the supernatants. Peritoneal bacteria concentrations, remained relatively steady between 24 h (median: 5.04 log CFU) and 48 h (median: 5.19 log CFU) after infection. Peritoneal cytokine concentrations peaked early but were already diminished at 48 h after infection, despite persistent high bacteria levels. Macrophages, harvested from naïve mice responded vigorously to ex vivo stimulation with 105 CFU and 2 × 108 CFU Klebsiella. Cells harvested from animals 48 h after infection, were unresponsive to an ex vivo stimulation with 105 CFU Klebsiella, but fully responded to 108 CFU. Persistent intraabdominal bacterial infection induced dose dependent microbial tolerance in peritoneal macrophages.  相似文献   

6.
为了阐明幼虫密度对草地螟Loxostege sticticalis L.(鳞翅目: 螟蛾科)细胞免疫能力的影响, 本研究调查了在活体灰菜植株上1,5,10和20头/瓶(900 mL)4种密度条件下的其5龄幼虫血细胞种类、数量和组成。结果表明: 草地螟幼虫血淋巴中有原血细胞、浆血细胞、 颗粒血细胞、珠血细胞和类绛色血细胞等5种(类)血细胞。血细胞总数、 浆血细胞、颗粒血细胞数量随幼虫密度的增加而显著递增, 但原血细胞、珠血细胞和类绛色血细胞数量在幼虫密度间的差异不明显;各种血细胞所占血细胞总数的比例在4个密度中的排序相同, 但10和20头/瓶密度下的浆血细胞比例显著高于1头/瓶的,其余4种血细胞的比例在不同密度之间无显著差异。可见, 幼虫密度主要是通过影响草地螟幼虫浆血细胞和颗粒血细胞的数量及血细胞总数, 从而影响草地螟的细胞免疫能力。  相似文献   

7.
The present study focuses on the ability of Pterostichus melas italicus Dejean to mount cellular and humoral immune responses against invading pathogens. Ultrastructural analyses revealed the presence of five morphologically distinct types of hemocytes: prohemocytes, plasmatocytes, granulocytes, oenocytoids and macrophage-like cells. Differential hemocyte counts showed that plasmatocytes and granulocytes were the most abundant circulating cell types and plasmatocytes exhibited phagocytic activity following the latex bead immune challenge. Macrophage-like cells were recruited after the immune challenge to remove exhausted phagocytizing cells, apoptotic cells and melanotic capsules formed to immobilize the latex beads. Total hemocyte counts showed a significant reduction of hemocytes after latex bead treatment. Phenoloxidase (PO) assays revealed an increase of total PO in hemolymph after immune system activation with lipopolysaccharide (LPS). Moreover, the LPS-stimulated hemocytes showed increased protein expression of inducible nitric oxide synthase, indicating that the cytotoxic action of nitric oxide was engaged in this antimicrobial collaborative response. These results provide a knowledge base for further studies on the sensitivity of the P. melas italicus immune system to the environmental perturbation in order to evaluate the effect of chemicals on non-target species in agroecosystems.  相似文献   

8.
The cellular arm of the insect immune response is mediated by the activity of hemocytes. While hemocytes have been well-characterized morphologically and functionally in model insects, few studies have characterized the hemocytes of non-model insects. Further, the role of ontogeny in mediating immune response is not well understood in non-model invertebrate systems. The goals of the current study were to (1) determine the effects of caterpillar size (and age) on hemocyte density in naïve caterpillars and caterpillars challenged with non-pathogenic bacteria, and (2) characterize the hemocyte activity and diversity of cell types present in two forest caterpillars: Euclea delphinii and Lithacodes fasciola (Limacodidae). We found that although early and late instar (small and large size, respectively) naïve caterpillars had similar constitutive hemocyte densities in both species, late instar Lithacodes caterpillars injected with non-pathogenic E. coli produced more than a twofold greater density of hemocytes than those in early instars. We also found that both caterpillar species contained plasmatocytes, granulocytes and oenocytoids, all of which are found in other lepidopteran species, but lacked spherulocytes. Granulocytes and plasmatocytes were found to be strongly phagocytic in both species, but granulocytes exhibited a higher phagocytic activity than plasmatocytes. Our results strongly suggest that for at least one measure of immunological response, the production of hemocytes in response to infection, response magnitudes can increase over ontogeny. While the underlying raison d’ être for this improvement remains unclear, these findings may be useful in explaining natural patterns of stage-dependent parasitism and pathogen infection.  相似文献   

9.
Hemocytes isolated from the larval hematopoietic organs of the silkworm were classified following staining with acridine orange and propidium iodide. Among the hemocytes isolated from the hematopoietic organs of whole fifth larval and wandering stages, most were prohemocytes (60%–70%) and oenocytoids (30%–40%). Granulocytes comprised only about 0.5%–1% at the wandering stage and were even rarer at other stages; no spherulocytes or plasmatocytes were found. Therefore, hemocyte differentiation inside larval hematopoietic organs is not as extensive as previously thought. Following 10–30 min in vitro culture of hemocytes isolated from larval hematopoietic organs, many young granulocytes and plasmatocytes appeared. Furthermore, during phagocytosis assays, prohemocytes were seen to adopt the morphology of plasmatocytes, containing fragments of phagocytosed cells. Our results underline the similarities between Drosophila and Bombyx hematopoiesis.  相似文献   

10.
There is need for efficacious biocontrol agents for aphids in commercial orchards. As a preliminary step to this end we determined the virulence of several Hypocreales fungi to pecan aphids. In the first experiment we tested the virulence of Isaria fumosorosea (ARSEF 3581) blastospores to three pecan aphids Monellia caryella, Melanocallis caryaefoliae, and Monelliopsis pecanis under laboratory conditions. Rates of 1 × 107 or 1 × 108 spores per ml were applied in 2 ml via a spray tower to 90 mm Petri dishes containing 10 aphids each. Mortality and mycosis were determined after 24, 48 and 72 h. Treatment effects were observed by 48 h post-application, and by 72 h the higher application rate caused >90% mortality and mycosis in M. caryella and M. caryaefoliae, whereas <70% was observed in M. pecanis.We conducted two subsequent experiments (Experiments 2 and 3), using the same methodology, to compare the virulence of several Hypocreales species and strains against the aphid of primary economic concern to most pecan growers, M. caryaefoliae. In Experiment 2, we compared blastospores and conidia of two I. fumosorosea strains (ARSEF 3581 and ATCC 20874 [= strain 97]). The blastospores of ARSEF 3581 and conidia of ATCC 20874 showed higher virulence than other treatments and thus were included in Experiment 3, which also compared the virulence of conidia of Beauveria bassiana (GHA strain) and Metarhizium anisopliae (F52 strain). Results in Experiment 3 indicated the highest virulence in I. fumosorosea 3581 blastospores and M. anisopliae (F52) followed by I. fumosorosea (20874) conidia. The detection of pathogenicity to pecan aphids establishes the potential for commercial usage and additional study. Results reported here will narrow treatments to test in future greenhouse and field trials.  相似文献   

11.
Conidial tolerance to the upper thermal limits of summer is important for fungal biocontrol agents, whose conidia are formulated into mycoinsecticides for field application. To develop an efficient assay system, aerial conidia of eight Metarhizium anisopliae, four M. anisopliae var. anisopliae, and six M. anisopliae var. acridum isolates with different host and geographic origins were wet-stressed for ≤180 min at 48 °C or incubated for 14 d colony growths at 10-35 °C. The survival ratios (relative to unstressed conidia) of each isolate, examined at 15-min intervals, fit a logistic equation (r2 ≥ 0.975), yielding median lethal times (LT50s) of 14.3-150.3 min for the 18 isolates stressed at 48 °C. Seven grasshopper isolates from Africa had a mean LT50 of 110 (73-150) min, but could not grow at 10 or 15 °C. The mean LT50 of five non-grasshopper isolates capable of growing at 10-35 °C was 16 (10-26) min only. Three isolates with typically low (type I), medium (type II), and high (type III) levels of tolerance to 48 °C were further assayed for ≤4-d tolerance of their conidia to the wet stress at 38, 40, 42, or 45 °C. The resultant LT50s decreased to 20, 53 and 167 min at 48 °C from 507, 1612, and 8256 min at 38 °C for types I, II and III, respectively. For the distinguished types, the logarithms of the LT50s were significantly correlated to the temperatures of 38-48 °C with an inverse linearity (r2 ≥ 0.88). The method developed to assay quantitatively fungal thermotolerance would be useful for screening of fungal candidates for improved pest control in summer.  相似文献   

12.
Indirect evidence for the natural existence of the free-protoplast stage of the fungus Entomophthora egressa in the eastern hemlock looper, Lambdina fiscellaria fiscellaria, is presented. The protoplasts were viable after 72 hr postinjection and subsequent development in the host produced conidia characteristic of E. egressa. The hemocytes studied (plasmatocytes, granular cells, and spherule cells) did not adhere to the protoplasts either in vivo or in vitro. Cells of Escherichia coli and sporangiospores of Absidia repens adhered to the granular cells in vitro. The granular cells adhered to the hyphae of Rhizopus nigricans in vitro. The spherule cells strongly adhered to the hyphae and hyphal bodies of E. egressa in vitro. The protoplasts, hyphae, and conidia of E. egressa and the hemocytes of L. fiscellaria fiscellaria adhered to positively charged DEAE-Sephadex beads and not to negatively charged CM-Sephadex beads. Aspects of active and passive strategies for protoplast evasion of host hemocytes are discussed with some emphasis on hemocyte-protoplast electrostatic repulsion and active secretion of hemocyte inhibitors by the protoplasts.  相似文献   

13.
Crustacean hyperglycemic hormone (CHH) was originally identified in a neuroendocrine system-the X-organ/sinus gland complex. In this study, a cDNA (Prc-CHH) encoding CHH precursor was cloned from the hemocyte of the crayfish Procambarus clarkii. Analysis of tissues by a CHH-specific enzyme-linked immunosorbent assay (ELISA) confirmed the presence of CHH in hemocytes, the levels of which were much lower than those in the sinus gland, but 2 to 10 times higher than those in the thoracic and cerebral ganglia. Total hemocytes were separated by density gradient centrifugation into layers of hyaline cell (HC), semi-granular cell (SGC), and granular cell (GC). Analysis of extracts of each layer using ELISA revealed that CHH is present in GCs (202.8 ± 86.7 fmol/mg protein) and SGCs (497.8 ± 49.4 fmol/mg protein), but not in HCs. Finally, CHH stimulated the membrane-bound guanylyl cyclase (GC) activity of hemocytes in a dose-dependent manner. These data for the first time confirm that a crustacean neuropeptide-encoding gene is expressed in cells essential for immunity and its expression in hemocytes is cell type-specific. Effect of CHH on the membrane-bound GC activity of hemocyte suggests that hemocyte is a target site of CHH. Possible functions of the hemocyte-derived CHH are discussed.  相似文献   

14.
Hemocytes are key players in the immune response against pathogens in insects. However, the hemocyte types and their functions in the white-spotted flower chafers, Protaetia brevitarsis seulensis (Kolbe), are not known. In this study, we used various microscopes, molecular probes, and flow cytometric analyses to characterize the hemocytes in P. brevitarsis seulensis. The circulating hemocytes were classified based on their size, morphology, and dye-staining properties into six types, including granulocytes, plasmatocytes, oenocytoids, spherulocytes, prohemocytes, and adipohemocytes. The percentages of circulating hemocyte types were as follows: 13% granulocytes, 20% plasmatocytes, 1% oenocytoids, 5% spherulocytes, 17% prohemocytes, and 44% adipohemocytes. Next, we identified the professional phagocytes, granulocytes, which mediate encapsulation and phagocytosis of pathogens. The granulocytes were immunologically or morphologically activated and phagocytosed potentially hazardous substances in vivo. In addition, we showed that the phagocytosis by granulocytes is associated with autophagy, and that the activation of autophagy could be an efficient way to eliminate pathogens in this system. We also observed a high accumulation of autophagic vacuoles in activated granulocytes, which altered their shape and led to autophagic cell death. Finally, the granulocytes underwent mitotic division thus maintaining their number in vivo.  相似文献   

15.
Insect-passaged cultures of entomopathogenic fungi grown on potato dextrose agar media have been shown to have altered virulence and profiles of volatile compounds. The present study demonstrated the pathogenic status of FS0 (in vitro) and FS1 and FS2 (insect-passaged cultures grown on PDA) cultures of Metarhizium anisopliae (strains 406 and 02049) and Beauveria bassiana by a non-choice assay, in which filter paper was inoculated with fungal spores at a concentration of 1 × 107 spores/ml. The FS1 and FS2 cultures of M. anisopliae strain 02049 and B. bassiana produced conidia with high virulence, and the volatile profiles of these conidia comprised relatively lower percentages of branched-alkanes than conidia from the FS0 cultures. In contrast, the conidia from an FS0 culture of M. anisopliae strain 406 had somewhat elevated virulence levels, but their volatile profile had <2% branched-alkanes. The FS1 and FS2 cultures of M. anisopliae strain 406 did not gain virulence, and these cultures showed a decline in virulence along with major alteration of their volatile profiles. Their volatile profiles mainly comprised branched-alkanes. The volatile profiles of the FS1 and FS2 cultures lacked n-tetradecane, which was an important component of all the virulent cultures. Four compounds, 2-phenylpropenal, 2,5,5-trimethyl-1-hexene, n-tetradecane and 2,6-dimethylheptadecane, were detected only from the virulent cultures, suggesting that low LT50 values were probably due to the production of these compounds. This is the first report to characterize volatiles from FS0, FS1 and FS2 cultures of entomopathogenic fungi; its utility in different aspects opens an interesting area for further investigations.  相似文献   

16.
Culexpipiens quinquefasciatus (C. quinquefasciatus) is an important vector that can transmit human diseases such as West Nile virus, lymphatic filariasis, Japanese encephalitis and St. Louis encephalitis. However, very limited research concerning the humoral and cellular immune defenses of C. quinquefasciatus has been done. Here we present the research on hemocyte identification and plasma including hemocyte prophenoloxidase from C. quinquefasciatus at all developmental stages in order to obtain a complete picture of C. quinquefasciatus innate immunity. We identified hemocytes into four types: prohemocytes, oenocytoids, plasmatocytes and granulocytes. Prophenoloxidase (PPO) is an essential enzyme to induce melanization after encapsulation. PPO-positive hemocytes and plasma PPO were observed at all developmental stages. As for specific hemocyte types, prophenoloxidase was found in the plasmatocytes at larval stage alone and in the smallest prohemocytes during almost all developmental stages. Moreover, the granulocytes were PPO-positive from blood-fed female mosquitoes and oenocytoids were observed PPO-positive in pupae and in adult females after blood-feeding. As for plasma, there were different patterns of PPO in C. quinquefasciatus at different developmental stages. These results are forming a basis for further studies on the function of C. quinquefasciatus hemocytes and prophenoloxidase as well as their involvement in fighting against mosquito-borne pathogens.  相似文献   

17.
Host-pathogen interaction models in aquatic species are useful tools for understanding the pathogenicity of diseases in cultured and wild populations. In this study we report the differential in vivo response of soft-shell clam (Mya arenaria) hemocytes against two strains of Vibrio splendidus. Responses were measured 24 h after injecting into the posterior adductor muscle either an endemic wild-type strain (7SHRW) or a strain associated with oyster mortalities (LGP32-GFP). Changes in hemocyte structure (percentage of rounded cells) were assessed microscopically. Changes in adherence and hemocyte numbers were analyzed by flow-cytometric cell counting. Increased percentages of rounded cells were found in response to both strains. However, values from the group infected with LGP32-GFP were significantly higher (p < 0.01) than with 7SHRW. The cell adherence was markedly diminished (p < 0.001) by LGP32-GFP whereas 7SHRW did not change it significantly. Increased numbers of hemocytes (p < 0.001) were induced by LGP32-GFP, while no significant changes were found after infection with 7SHRW. These results show the regulatory capacity of soft-shell clams hemocytes to perform specific responses against different strains of V. splendidus.  相似文献   

18.
王世贵  叶恭银  胡萃 《昆虫学报》2006,49(2):200-205
研究了转cry1Ab基因水稻“克螟稻1号”对二化螟Chilo suppressalis幼虫细胞免疫系统的影响。结果表明,转cry1Ab基因水稻对二化螟幼虫的血细胞影响明显,取食转cry1Ab基因水稻后,二化螟幼虫各类血细胞都明显低于取食非转基因水稻“秀水11”的对照组(原血细胞和囊血细胞在取食初期例外),随取食时间延长,各类血细胞数量及血细胞总数均呈递减的趋势。从各类血细胞所占血细胞总数的百分比来看,原血细胞在取食36 h后锐减,而浆血细胞和粒血细胞则比例增加,其余珠血细胞、囊血细胞的变化不明显。另外,血细胞还出现空泡化、肿胀等病态变化,致使血细胞快速破裂。由此推测转cry1Ab基因水稻自身表达的毒蛋白能严重干扰靶标昆虫二化螟幼虫的细胞免疫系统。  相似文献   

19.
Reticulitermes flavipes workers were individually inoculated with 10,000 conidia of the entomopathogenic fungus Metarhizium anisopliae. After being kept in groups of 20 individuals for 1-6 d, histopathological approach showed that most of the inoculated conidia were groomed from the surface of the cuticle by nestmates within 24 h, and that a large number of conidia was subsequently found in different parts of the gut of the groomers. Our observations showed that, among thousands of conidia found in the termite’s gut, conidial germination never occurred in all inspected specimens, even when the conidia had the chance to bind to the surface of the cuticular lining of the gut. In addition, when termites were left for decomposition several days after death caused by an external infection of M. anisopliae, the hyphal growth was generalized in the body cavity of the cadaver, but was never observed in the lumen of the gut even 2 d post-mortem. Our observation suggests that the putative biochemicals involved in the termite’s gut defense against fungal pathogens are from multiple origins.  相似文献   

20.
Kind TV 《Tsitologiia》2003,45(1):14-25
On the basis of in vitro observation of live cells and examination of stained slides of larval and prepupal Calliphora vicina hemolymph, seven types of hemocytes have been detected: prohemocytes, stable and unstable hyaline cells, thrombocytoids, spindle cells, larval plasmatocytes, and plasmatocytes I-IV, a. The last representing sequential stages of one cell line differentiation. Prohemocytes are basic cells, from which other forms of hemocytes derive outside the hemopoietic tissue, i.e. in free hemolymph. At the last larval instar, three waves of hemopoiesis occur. Either wave tends to increase the general number of cells and to change the quality of hemocyte population. The first wave occurs at the close of larva feeding and is accompanied by increase in the number of hyaline hemocytes, thrombocytoids and larval plasmatocytes. The second wave of hemopoiesis occurs after the larva's crop emptying. In this period the main increase of hemocyte population occurs at the expense of prohemocytes and plasmatocytes I. The most significant (five-fold) explosion of the population of free hemocytes takes place at the onset of pupariation and correlates with the rise of ecdysone titer. At the first stage of this peak, the amount of plasmatocytes I sharply increases. Further on these are rapidly differentiated into plasmatocytes II and III. After the puparium formation, hemocytes are reduced in number. Plasmatocytes III phagocytose fragments of destroyed larval tissues, pass to the stage of plasmatocytes IV (macrophages), and partially settle on tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号