首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An endoparasitoid wasp, Cotesia plutellae, parasitizes larvae of the diamondback moth, Plutella xylostella, with its symbiotic polydnavirus, C. plutellae bracovirus (CpBV). This study analyzed the role of Inhibitor-kB (IkB)-like genes encoded in CpBV in suppressing host antiviral response. Identified eight CpBV-IkBs are scattered on different viral genome segments and showed high homologies with other bracoviral IkBs in their amino acid sequences. Compared to an insect ortholog (e.g., Cactus of Drosophila melanogaster), they possessed a shorter ankyrin repeat domain without any regulatory domains. The eight CpBV-IkBs are, however, different in their promoter components and expression patterns in the parasitized host. To test their inhibitory activity on host antiviral response, a midgut response of P. xylostella against baculovirus infection was used as a model reaction. When the larvae were orally fed the virus, they exhibited melanotic responses of midgut epithelium, which increased with baculovirus dose and incubation time. Parasitized larvae exhibited a significant reduction in the midgut melanotic response, compared to nonparasitized larvae. Micro-injection of each of the four CpBV genome segments containing CpBV-IkBs into the hemocoel of nonparasitized larvae showed the gene expressions of the encoded IkBs and suppressed the midgut melanotic response in response to the baculovirus treatment. When nonparasitized larvae were orally administered with a recombinant baculovirus containing CpBV-IkB, they showed a significant reduction in midgut melanotic response and an enhanced susceptibility to the baculovirus infectivity.  相似文献   

2.
To understand the low toxicity of Cry toxins in planthoppers, proteolytic activation of Cry1Ab in Nilaparvata lugens was studied. The proteolytic processing of Cry1Ab protoxin by N. lugens midgut proteases was similar to that by trypsin activated Cry1Ab. The Cry1Ab processed with N. lugens midgut proteases was highly insecticidal against Plutella xylostella. However, Cry1Ab activated either by trypsin or the gut proteases of the brown planthopper showed low toxicity in N. lugens. Binding analysis showed that activated Cry1Ab bound to brush border membrane vesicles (BBMV) from N. lugens at a significantly lower level than to BBMV from P. xylostella.  相似文献   

3.
Eicosanoids mediate insect immune responses, especially against bacterial infection. Phospholipase A2 (PLA2) catalyzes the committed step of the eicosanoid biosynthesis pathway. Three PLA2 inhibitors have been identified from metabolites of an entomopathogenic bacterium, Xenorhabdus nematophila: benzylideneacetone (BZA), Pro-Tyr (PY), and acetylated Phe-Gly-Val (Ac-FGV). Interestingly, they share benzenepropane as a core chemical structure. We analyzed the functional significance of the core structure using structural derivatives. Removing a phenyl ring from PY resulted in significant loss of the PLA2 inhibitory activity, as seen in a Pro-Ala derivative. Though the p-hydroxyl group was not critical in PY as seen in Pro-Phe derivative, its addition to BZA resulted in significant loss of inhibitory activity. Some alterations of structures other than the core structure increased PLA2-inhibitory activity in some derivatives, including Ala-Tyr (AY) and Phe-Gly-Val (FGV) derivatives. Using these selected derivatives, we further analyzed synergistic effects on pathogenicity of Bacillus thuringiensis (Bt) against the second instar larvae of Plutella xylostella. These two derivatives significantly enhanced the Bt pathogenicity. This study introduces two novel compounds that inhibit PLA2 and suggests their application in combination with Bt to control P. xylostella.  相似文献   

4.
Apolipophorin III (ApoLpIII) has been known to play critical roles in lipid transport and immune activation in insects. This study reports a partial ApoLpIII gene cloned from the diamondback moth, Plutella xylostella. It showed that the gene was expressed in all developmental stages of P. xylostella. In larval stage, it was expressed in all tested tissues of hemocyte, fat body, gut, and epidermis. In response to bacterial challenge, the larvae showed an enhanced level of ApoLpIII expression by a quantitative real-time RT-PCR. RNA interference of ApoLpIII by its specific double stranded RNA (dsRNA) caused significant knockdown of its expression level and resulted in significant suppression in hemocyte nodule formation in response to bacterial challenge. However, larvae treated with the dsRNA exhibited a significant recovery in the cellular immune response by addition of a recombinant ApoLpIII. Parasitization by an endoparasitoid wasp, Cotesia plutellae, suppressed expression of ApoLpIII and resulted in a significant suppression in the hemocyte nodule formation. The addition of the recombinant ApoLpIII to the parasitized larvae significantly restored the hemocyte activity. Infection of an entomopathogenic bacterium, Xenorhabdus nematophila, caused potent pathogenicity of P. xylostella. However, the addition of the recombinant ApoLpIII to the infected larvae significantly prevented the lethal pathogenicity. This study suggests that ApoLpIII limits pathogenicity induced by parasitization or bacterial infection in P. xylostella.  相似文献   

5.
6.
Yin F  Wang M  Tan Y  Deng F  Vlak JM  Hu Z  Wang H 《Journal of virology》2008,82(17):8922-8926
The envelope fusion protein F of Plutella xylostella granulovirus is a computational analogue of the GP64 envelope fusion protein of Autographa californica nucleopolyhedrovirus (AcMNPV). Granulovirus (GV) F proteins were thought to be unable to functionally replace GP64 in the AcMNPV pseudotyping system. In the present study the F protein of Agrotis segetum GV (AgseGV) was identified experimentally as the first functional GP64 analogue from GVs. AgseF can rescue virion propagation and infectivity of gp64-null AcMNPV. The AgseF-pseudotyped AcMNPV also induced syncytium formation as a consequence of low-pH-induced membrane fusion.  相似文献   

7.
8.
Abstract Six new cell lines were established from embryonic tissues of the diamondback moth, Plutella xylostella (L.). The cell lines showed differential characteristics, including growth in attachment or in suspension, susceptibility to a baculovirus infection and expression of genes involved in the glucosinolate detoxification pathway in R xylostella larvae. Five of the cell lines grew attached to the culture flask and one cell line grew unattached as a suspension cell line. The cell lines had population doubling times ranging from IS to 23 h. Among five of the P. xylostella cell lines examined for infection of a nucleopolyhe. drovirus from Autographa californica, AcMNPV four cell lines were highly susceptible to AcMNPV infection, but one was only semi-permissive to AcMNPV infection. The production of two recombinant proteins, a β-galactosidase of bacterial origin and a secreted alkaline phosphatase of eukaryotic origin, in the R xylostella cell lines was examined in comparison with that in the cell line Sf9 which is commonly used for recombinant protein production. In the P. xylostella cell lines, expression of three important midgut genes involved in the glucosinolate detoxification pathway, including the glucosinolate sulfatase genes GSS1 and GSS2 and the sulfatase modifying factor gene SUMF1、was detected. The R xylostella cell lines developed in this study could be useful in in vitro research systems for studying insec-virus interactions and complex molecular mechanisms in glucosinolate detoxification and insect-plant interactions.  相似文献   

9.
A polydnavirus, Cotesia plutellae bracovirus (CpBV), possesses segmented genome located on chromosome(s) of an endoparasitoid wasp, C. plutellae. An episomal viral segment (CpBV-S3) consists of 11,017 bp and encodes two putative open reading frames (ORFs). ORF301 shows amino acid sequence homologies (28-50%) with RNase T2s of various organisms. It also contains BEN domain in C-terminal region. ORF302 is a hypothetical gene, which is also found in other bracoviruses. Both genes were expressed in larvae of Plutella xylostella parasitized by C. plutellae. Their expressions were detected in all tested tissues including hemocyte, fat body, gut, and epidermis. To analyze effects of these genes on the parasitism, the segment of CpBV-S3 was injected to nonparasitized larvae of P. xylostella, in which the two genes were expressed at least for 4 days post-injection. The larvae injected with CpBV-S3 exhibited significant immunosuppression, such as reduction in total hemocyte population and impairment in nodule formation behavior of hemocytes in response to bacterial challenge. Each gene expression in the treated larvae was inhibited by co-injecting respective double strand RNA (dsRNA) specific to each ORF. Injection of dsRNA of ORF301 could rescue the immunosuppression of the viral segment-treated larvae, while dsRNA specific to ORF302 did not. These results suggest that a putative RNase fused with a BEN domain encoded in CpBV-S3 plays a parasitic role in inducing host immunosuppression in the parasitism.  相似文献   

10.
A polydnavirus, Cotesia plutellae bracovirus (CpBV), possesses a segmented and dispersed genome that is located on chromosome(s) of its symbiotic endoparasitic wasp, C. plutellae. When the host wasp parasitizes larvae of the diamondback moth, Plutella xylostella, at least 27 viral genome segments are delivered to the parasitized host along with the wasp egg. The parasitized P. xylostella exhibits significant immunosuppression and a prolonged larval development. Parasitized larvae take about 2 days longer than nonparasitized larvae to develop until the wandering stage of the final larval instar, and die after egress of the full grown wasp larvae. Developmental analysis using juvenile hormone and ecdysteroid analogs suggests that altering endocrine signals could induce the retardation of larval developmental rate in P. xylostella. In this study we used a transient expression technique to micro-inject individual CpBV genome segments, and tested their ability to induce delayed larval development of P. xylostella. We demonstrated that a CpBV segment was able to express its own encoded genes when it was injected into nonparasitized larvae, in which the expression patterns of the segment genes were similar to those in the larvae parasitized by C. plutellae. Twenty three CpBV genome segments were individually cloned and injected into the second instar larvae of P. xylostella and their effects assessed by measuring the time taken for host development to the cocooning stage. Three CpBV genome segments markedly interfered with the host larval development. When the putative genes of these segments were analyzed, it was found that they did not share any common genes. Among these segments able to delay host development, segment S27 was predicted to encode seven protein tyrosine phosphatases (CpBV-PTPs), some of which were mutated by insertional inactivation with transposons, while other encoded gene expressions were unaffected. The mutant segments were unable to induce prolonged larval development of P. xylostella. These results suggest that CpBV can induce prolonged larval development of P. xylostella, and that at least some CpBV-PTPs may contribute to the parasitic role probably by altering titers of developmental hormones.  相似文献   

11.
Enhancins are a class of metalloproteases found in some baculoviruses that enhance viral infection by degrading the peritrophic membrane (PM) of the insect midgut. However, sequencing has revealed enhancin-like genes with 24-25% homology to viral enhancins, in the genomes of Yersinia pestis and Bacillus anthracis. AcMNPV does not encode enhancin therefore recombinant AcMNPV budded viruses (BVs) and polyhedra inclusion bodies (PIBs) were generated expressing the bacterial Enhancins. Bacterial Enhancins were found to be cytotoxic when compared to viral enhancin, however, larval bioassays suggested that the bacterial Enhancins did not enhance infection in the same way as viral Enhancin. This suggests that the bacterial Enhancins may have evolved a distinct biochemical function.  相似文献   

12.
A novel recombinant baculovirus, NeuroBactrus, was constructed to develop an improved baculovirus insecticide with additional beneficial properties, such as a higher insecticidal activity and improved recovery, compared to wild-type baculovirus. For the construction of NeuroBactrus, the Bacillus thuringiensis crystal protein gene (here termed cry1-5) was introduced into the Autographa californica nucleopolyhedrovirus (AcMNPV) genome by fusion of the polyhedrin–cry1-5–polyhedrin genes under the control of the polyhedrin promoter. In the opposite direction, an insect-specific neurotoxin gene, AaIT, from Androctonus australis was introduced under the control of an early promoter from Cotesia plutellae bracovirus by fusion of a partial fragment of orf603. The polyhedrin–Cry1-5–polyhedrin fusion protein expressed by the NeuroBactrus was not only occluded into the polyhedra, but it was also activated by treatment with trypsin, resulting in an ∼65-kDa active toxin. In addition, quantitative PCR revealed that the neurotoxin was expressed from the early phase of infection. NeuroBactrus showed a high level of insecticidal activity against Plutella xylostella larvae and a significant reduction in the median lethal time against Spodoptera exigua larvae compared to those of wild-type AcMNPV. Rerecombinant mutants derived from NeuroBactrus in which AaIT and/or cry1-5 were deleted were generated by serial passages in vitro. Expression of the foreign proteins (B. thuringiensis toxin and AaIT) was continuously reduced during the serial passage of the NeuroBactrus. Moreover, polyhedra collected from S. exigua larvae infected with the serially passaged NeuroBactrus showed insecticidal activity similar to that of wild-type AcMNPV. These results suggested that NeuroBactrus could be recovered to wild-type AcMNPV through serial passaging.  相似文献   

13.
To improve the insecticidal activity of Autographa californica nucleopolyhedrovirus (AcMNPV), using co-expression of Bacillus thuringiensis crystal protein and a Kunitz-type toxin isolated from bumblebee Bombus ignitus venom, a recombinant AcMNPV, ApPolh5-3006BiKTI, expressing Bi-KTI under the control of early promoter from Cotesia plutellae bracovirus (CpBV) was constructed. In this recombinant virus, B. thuringiensis cry1-5 crystal protein gene was introduced into the genome by the fusion of polyhedrin-cry1-5 under the control of polyhedrin gene promoter. RT-PCR analysis indicated that both Bi-KTI and polyhedrin-cry1-5 fusion protein were successfully expressed from the infected cells. In addition, SDS-PAGE revealed that polyhedrin-cry1-5 fusion protein expressed by recombinant viruses was occluded into the polyhedra. ApPolh5-3006BiKTI showed an improved insecticidal activity against larvae of Plutella xylostella and Spodoptera exigua. At low dosage rates, it was more effective against S. exigua than on P. xylostella, but more rapid insecticidal activity was shown in P. xylostella. These results strongly suggest that co-expression of Bt toxin and Kunitz-type toxins could be successfully applied to improve the insecticidal activity of baculoviruses.  相似文献   

14.
An entomopathogenic fungus, Beauveria bassiana, had significant insecticidal activity against the beet armyworm, Spodoptera exigua. However, it took almost one week to cause significant mortality. This study used a mixture treatment with an immunosuppressant to enhance the fungal pathogenicity. A bacterial metabolite, benzylideneacetone (BZA), had a significant synergistic effect on the fungal pathogenicity against S. exigua, although it had little insecticidal activity by itself. The mixture treatment shortened median lethal time of B. bassiana by approximately 2 days. The synergistic activity of BZA on the pathogenicity of B. bassiana was induced by its immunosuppressive effects on both cellular and humoral antifungal responses of S. exigua. In response to B. bassiana, S. exigua larvae can form hemocytic nodules. Nodules were significantly suppressed by BZA treatment. Moreover, BZA inhibited expression of some antimicrobial peptide genes of S. exigua in response to fungal challenge. The immunosuppressive condition induced by BZA allowed B. bassiana to easily colonize and multiply in the hemocoel of treated larvae, which resulted in significant enhancement of the pathogenicity of B. bassiana.  相似文献   

15.
Summary Insect cell lines from Arthropoda represented by Lepidoptera, Coleoptera, Diptera, and Homoptera were evaluated for their ability to support replication of AcMNPV. In addition, some of the cell lines that were refractive to AcMNPV were tested with AcMNPV hsp70 Red, a recombinant carrying the red fluorescent protein (RFP) gene, for their ability to express this protein after inoculation. Of the 10 lepidopteran cell lines tested, only three cell lines from Helicoverpa zea (BCIRL-HZ-AM1), Lymantria dispar (IPLB-LD 65), and Cydia pomonella (CP-169) failed to support detectable viral replication as measured by tissue culture infectious dose 50 (TCID50) assay. Heliothis virescens (BCIRL-HV-AM1) produced the highest viral titer of 2.3±0.1×107 TCID50/ml followed by Heliothis subflexa (BCIRL-HS-AM1) at 4.7±0.1×106 TCID50/ml and Spodoptera frugiperda (IPLB-SF21) at 4.1±0.1×106 TCID50/ml. None of the coleopteran, dipteran, or homopteran cell lines supported AcMNPV replication. However, when studies were performed using AcMNPV hsp70 Red, the dipteran cell lines Aedes aegypti (ATC-10) and Drosophila melanogaster (line 2), both expressed the RFP as well as the refractive lepidopteran cell lines from H. zea and L. dispar. No RFP expression was observed in any of the coleopteran or homopteran cell lines. Cell lines refractive to AcMNPV did not appear to be adversely affected by the virus, as judged by their ability to multiply, nor was there any indication of induced apoptosis, as assessed by deoxyribonucleic acid fragmentation profiles or cell blebbing or both. Disclaimer: Mention of trade names or commercial product in the publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U. S. Department of Agriculture. All programs and services of the U. S. Department of Agriculture are offered on a nondiseriminatory basis without regard to race, color, national origin, religion, sex, age marital status, or handicap.  相似文献   

16.
Bt toxins ingested by insect pests can bind to midgut receptors and cause death, although several steps in this process remain unclear. Multiple Bt toxin receptors have been identified in Lepidoptera, including a cadherin-like protein (CaLP), which is central to several models explaining Bt toxins’ mode of action. Mutations in the Plutella xylostella ATP-dependent binding cassette transporter C2 (Px-abcc2), rather than CaLP, are genetically linked with Bt Cry1Ac resistance. Here we expressed Px-abcc2 in Drosophila and performed larval bioassays to determine whether this protein acts as an effective Bt receptor. Cry1Ac had no effect on larvae expressing Px-abcc2 in salivary glands, yet larvae expressing Px-abcc2 in the midgut were highly susceptible to both Cry1Ac protoxin and trypsin activated toxin. Furthermore, the CaLP orthologue has been lost from the Drosophila genome, making this a useful system for investigating the role of CaLP peptides from Manduca sexta (CR12-MPED), which are known to act as Bt synergists in larval feeding assays. Drosophila larvae expressing Px-ABCC2 in the midgut were fed LD50 concentrations of Cry1Ac toxin or protoxin, plus purified CR12-MPED cloned from M. sexta or P. xylostella. The M. sexta CR12-MPED protein acted synergistically with Cry1Ac protoxin and activated toxin significantly more effectively than the P. xylostella peptide. This work demonstrates ABCC2 is the major functional Cry1Ac receptor for P. xylostella and the importance of CaLP proteins in Bt mode of action may vary between different lepidopteran species.  相似文献   

17.
Solitary koinobiont endoparasitoids generally reduce the growth of their hosts by a significant amount compared with healthy larvae. Here, we compared the development and host usage strategies of the solitary koinobiont endoparasitoid, Meteorus pulchricornis, when developing in larvae of a large host species (Mythimna separata) and a much smaller host species (Plutella xylostella). Caterpillars of M. separata were parasitized as L2 and P. xylostella as L3, when they weighed approximately 2 mg. The growth of parasitized M. separata larvae was reduced by almost 95% compared with controls, whereas parasitized P. xylostella larvae grew some 30% larger than controls. Still, adult wasps emerging from M. separata larvae were almost twice as large as wasps emerging from P. xylostella larvae, had larger egg loads after 5 days and produced more progeny. Survival to eclosion was also higher on M. separata than on P. xylostella, although parasitoids developed significantly faster when developing on P. xylostella. Our results provide evidence that koinobionts are able to differentially regulate the growth of different host species. However, there are clearly also limitations in the ability of parasitoids to regulate phenotypic host traits when size differences between different host species are as extreme as demonstrated here.  相似文献   

18.
19.
Host-pathogen interactions are central components of ecological networks where the MAPK signaling pathways act as central hubs of these complex interactions. We have previously shown that an insect hormone modulated MAPK signaling cascade participates as a general switch to trans-regulate differential expression of diverse midgut genes in the diamondback moth, Plutella xylostella (L.) to cope with the insecticidal action of Cry1Ac toxin, produced by the entomopathogenic bacterium Bacillus thuringiensis (Bt). The relationship between topology and functions of this four-tiered phosphorylation signaling cascade, however, is an uncharted territory. Here, we carried out a genome-wide characterization of all the MAPK orthologs in P. xylostella to define their phylogenetic relationships and to confirm their evolutionary conserved modules. Results from quantitative phosphoproteomic analyses, combined with functional validations studies using specific inhibitors and dsRNAs lead us to establish a MAPK “road map”, where p38 and ERK MAPK signaling pathways, in large part, mount a resistance response against Bt toxins through regulating the differential expression of multiple Cry toxin receptors and their non-receptor paralogs in P. xylostella midgut. These data not only advance our understanding of host-pathogen interactions in agricultural pests, but also inform the future development of biopesticides that could suppress Cry resistance phenotypes.  相似文献   

20.
Nodulation is the temporally and quantitatively most important cellular defense response to bacterial, fungal and some viral infections in insects. We tested the hypothesis that prostaglandins and other eicosanoids are responsible for mediating nodulation reactions to bacterial infection in larvae of the blowfly Chrysomya megacephala. Third-instar larvae treated with Ureaplasma urealyticum formed nodules in a challenge dose-dependent manner. Nodulation was evoked shortly after injection and reached a maximum of approximately 25 nodules/larva within 8 h. Larvae treated with the glucocorticoid, dexamethasone and the cyclooxygenase inhibitors, indomethacin and piroxicam were impaired in their ability to form nodules following U. urealyticum infection. The number of nodules decreased with increasing doses of piroxicam. Contrarily, treating larvae with the lipooxygenase inhibitor, esculetin, and the dual cyclooxygenase/lipooxygenase inhibitor, phenidone did not influence nodulation reactions to infection. Supplying dexamethasone-treated larvae with the eicosanoid precursor, arachidonic acid, reversed the inhibitory effect of dexamethasone on nodulation. We infer from these results that eicosanoids mediate nodulation reactions to infection of a bacterial species that lacks cell walls in larvae of the blowfly, C. megacephala.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号