首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Temperature shock to early pupae causes wing color-pattern changes in butterflies. These plastic changes are ascribed to the hemolymph level of the cold-shock hormone (CSH) in pupae as well as to other mechanisms. Here, we characterized heat-shock-induced color-pattern changes using the blue pansy butterfly Junonia orithya (Lepidoptera: Nymphalidae). In response to the 38-42 °C heat-shock treatments, parafocal elements (PFEs) were thinned and dislocated away from eyespots; this was the reverse of the direction of the cold-shock-induced changes. Somewhat surprisingly, in response to the lethal 44 °C heat shock, PFEs were modified as in the case of a cold-shock. These modifications were not affected by the removal of the head-prothorax portion of pupae. While the hemolymph-mediated transfer of the possible PFE-modification property induced by the 42 °C treatment was unsuccessful in the parabiosis experiment, the transfer of the factor induced by the 44 °C treatment was successful. In contrast, reduction of the blue background area was obtained not only by the 42 and 44 °C treatments but also by the injection of thapsigargin, a plant-derived stress inducer, in males. The result of this treatment was similar to the natural color patterns of other closely related Junonia species. We also observed an increase in orange coloration by the 42 °C treatment in females, and this change was similar to ecdysteroid-induced modifications. Taken together, the heat-shock-induced PFE modifications in J. orithya can be explained by the levels of CSH, and other modifications are likely to be caused by general stress responses and ecdysteroid effects. We conclude that phenotypic plasticity of the wing color patterns to heat shock results from a combined effect of at least a few different mechanisms. These mechanisms might have been exploited in the color-pattern evolution of some Junonia species.  相似文献   

2.
The effects of temperature transition from 19 to 32 °C on oxidative stress indices and activities of the main antioxidant enzymes were investigated in the rotan, Perccottus glenii. Levels of lipid peroxides (LOOH), thiobarbituric acid-reactive substances (TBARS), low- (L-SH) and high-molecular mass (H-SH) thiols and activities of superoxide dismutase (SOD) and catalase were measured in rotan brain, liver and muscle over 1–12 h of high-temperature exposure followed by 3 or 24 h lower (19 °C) temperature recovery. Heat shock exposure during 1 h transiently increased 1.5–3.2-fold LOOH levels in rotan tissues with subsequent suppression of their content; however, 12 h exposure again increased LOOH levels in the brain. TBARS content were elevated by 2–3-fold during the entire heat shock exposure in the brain and liver. Levels of both products of lipid peroxidation were generally near control values during return to 19 °C. L-SH content was lowered during heat shock exposure in the brain, transiently increased after 6 h in the liver and almost disappeared after longer treatment in the muscle. Liver H-SH content slightly decreased under heat shock exposure, but was elevated after 6 h in the brain and muscle. In the latter case, L-SH level was below control values during recovery. SOD activities increased 2-fold in the liver after 6–12 h heat shock. Liver catalase activities decreased at the same conditions. Generally, a quick response to suppression of lipid peroxidation and possible involvement of its products in the up-regulation of antioxidant enzymes seem to be key adaptations to high temperature.  相似文献   

3.
4.

Aim

The effect of spent medium, obtained after different time-temperature pre-histories, on the heat inactivation of Escherichia coli K12 MG1655 is studied.

Methods and results

Stationary E. coli cells were heated in BHI broth (initial pH 7.5) at different time-temperature scenarios, i.e., (1) 30 °C to 55 °C at 0.14 °C/min, (2) 30 °C to 42 °C at 0.14 °C/min and (3) 30 °C to 42 °C at 0.8 °C/min. After the heat treatment, spent medium was filter-sterilized, non-stressed cells were added and inactivation experiments took place at 54 °C and 58 °C. In all scenarios, increased resistance was observed. The main characteristics of the spent medium - compared to the unmodified BHI broth - are (1) the presence of proteins (proven via SDS-PAGE) and (2) a lower pH of approximately 6. Possibly, the increased resistance is due to these proteins and/or the lower pH. Further experiments revealed that each factor separately may lead to an increased heat resistance.

Conclusions

It can be concluded that this increased heat resistance resulted from both the presence of the heat shock proteins in the spent medium and the lowered pH. Experiments, which separate both effects, showed that mainly the lower pH resulted in the increased thermotolerance.

Significance and impact of study

This study may lead to a better understanding and control of the heat stress adaptation phenomenon as displayed by E. coli at lethal temperatures. Therefore, it contributes to an improved assessment of the effect of temperature during thermal processes in the food industry.  相似文献   

5.
Using western-blotting techniques, we examined the effect of differently acting contaminants, such as anthracene (PAH), cadmium (heavy metal) and chloridazone (herbicide), as well as heat shock on the production of two Hsp70 proteins (cytoplasmic and stromal) in planktonic algae Desmodesmus subspicatus. All contaminants applied stimulated production of both Hsp70s in a concentration-dependent manner, but heat shock treatment turned out to be the most effective. Heat shock pretreatment (for 1 h at 40 °C) induced tolerance to cadmium in algal cells (measured by changes in growth rate), but not to anthracene or chloridazone. Two Hsp70s from D. subspicatus cells representing cytoplasmic and stromal proteins were purified by ATP-affinity chromatography.  相似文献   

6.
7.
In ectothermic organisms, reproductive success and survival are vitally affected by temperature. Here, we analyzed the effects of a short-time exposure to heat stress (1 h at 40 °C versus controls) on reproductive success and longevity in Bicyclus anynana butterflies. After having applied heat stress or a control treatment, individuals were mated in all four possible sexes by treatment combinations. Heat exposure of females caused a subsequent reduction in longevity, fecundity, egg size and concomitantly reproductive investment. Heat exposure of males also reduced longevity, but had in general little effect on the reproduction of female mates. However, females having mated with heat-stressed males showed surprisingly an increased rather than decreased early fecundity, which may indicate an increased investment in current reproduction in stressful environments. Heat stress had no significant effect on egg hatching success, time to copulation and copulation duration. Our results suggest that a short period of heat stress may substantially reduce longevity and reproductive output, with striking differences among sexes. We found no evidence for males being more strongly affected by heat stress than females.  相似文献   

8.
The importance of somatotropin as a growth promoting agent and immune-stimulator has long been recognized and its potential application in the fish farming industry has been an active research area. In the work reported here, we sought to improve the stability of a previously obtained truncated somatotropin by applying a 60 °C heat shock to the culture supernatant containing this molecule, and then compared its effects with and without heat shock on larval growth and immune functions. We observed that the treatment with heat shock at 60 °C enhanced protein stability, growth and innate immune functions in tilapia larvae.  相似文献   

9.
Acclimation in the thermal tolerance range of insects occurs when they are exposed to novel temperatures in the laboratory. In contrast to the large number of studies that have tested for the ability of insects to acclimate, relatively few have sought to determine the time-course for attainment and reversal of thermal acclimation. In this study the time required for the Mediterranean fruit fly, Ceratitis capitata Wiedemann, and the Natal fruit fly, Ceratitis rosa Karsch, to acclimate to a range of constant temperatures was tested by determining the chill-coma recovery time and heat knock-down time of flies that had been exposed to novel benign temperatures for different durations. The time required for reversal of acclimation for both Ceratitis species was also determined after flies had been returned to the control temperature. Acclimation to 31 °C for only one day significantly improved the heat knock-down time of C. capitata, but also led to slower recovery from chill-coma. Heat knock-down time indicated that acclimation was achieved after only one day in C. rosa, but it took three days for C. rosa to exhibit a significant acclimation response to a novel temperature of 33 °C when measured using chill-coma recovery time. Reversal of acclimation after return to initial temperature conditions was achieved after only one day in both C. capitata and C. rosa. Adult C. capitata held at 31.5 °C initially exhibited improved heat knock-down times but after 9 days the heat knock-down time of these flies had declined to levels not significantly different from that of control flies held at the baseline temperature of 24 °C. In both Ceratitis species, heat knock-down time declined with age whereas chill-coma recovery time increased with age, indicating an increased susceptibility to high and low temperatures, respectively.  相似文献   

10.
Behavioral patterns of motile ectotherms are often constrained by their microclimate conditions. For intertidal ectotherms, thermal and desiccation stresses are primary limiting factors. In this study, we developed and tested a steady-state heat budget model to calculate the duration of time that the salt marsh snail, Littoraria irrorata (Say), would maintain active behaviors (crawling or attached on stalks of marsh grass Spartina alterniflora) before switching to an inactive state (retracted and glued with a mucus holdfast on the stalks) due to desiccation. The snails' water loss tolerance limit was found to be 43.6±16.0 mg in a laboratory experiment using 5 temperature treatments (25-45 °C in 5 °C increments) with a vapor density (VD) deficit of ∼15 g/m3 (saturated VD-air VD). We found that snails attached to S. alterniflora at lower heights in the canopy had higher body temperatures during daytime hours but lower water loss rates. Furthermore, we found that calculated activity times generally matched daily and seasonal patterns of life history behaviors reported in the literature. If tidal emersion began at night (∼20:00-4:00 h), calculated activity times were much higher than if emersion began in the daytime. The total monthly activity times for 2005-2010 were the highest in May, the lowest in July, and increased from July to September. Therefore, L. irrorata's behaviors appear to be constrained by microclimate conditions within the S. alterniflora canopy as predicted by the heat budget model. The extent to which the snails' life history traits are controlled by environmental conditions will have important implications for their population dynamics as climate change progresses, and heat budget models can help to predict future changes in behavioral responses.  相似文献   

11.
Dermal glands (sensilla sagittiformia) secrete when brown dog ticks, Rhipicephalus sanguineus, are mechanically disturbed, presumably as a defensive mechanism. Recently, we observed that these glands secrete due to the pressure stimulation of engorgement. In this study, we examine how dermal gland secretion alters the physiology of R. sanguineus, particularly if this secretion is an important mechanism during blood feeding. The ability of ticks to retain water was not modified by dermal gland secretion, but heat tolerance was enhanced. Short-term heat shock was improved slightly (1 h at 50 °C to 1 h at 56 °C) and featured reduced injury responses and greater recovery after heat shock. When exposed to their host body temperature (37 °C) for prolonged periods, individuals that had secreted survived over 1 week longer than individuals that did not secrete. Dorsal application of squalene, the main component of dermal gland secretion, did not increase temperature tolerance, suggesting that the act of secreting rather than the physical properties of the secretion itself is responsible for the increase in heat tolerance. Based on our results, dermal gland secretion may be an essential mechanism in certain tick species (Amblyomma, Dermacentor, Hyalomma, Rhipicephalus, but not Ixodes) for tolerating body temperature and not succumbing to heat stress during the extended time periods of feeding on a mammalian host, serving as a mechanism to prevent heat damage from the host during feeding.  相似文献   

12.
An opportunity to explore the effects of fluctuating temperatures on tropical scleractinian corals arose when diurnal warming (as large as 4.7 °C) was detected over the rich coral communities found within the back reef of Moorea, French Polynesia. In April and May 2007, experiments were completed to determine the effects of fluctuating temperature on Pocillopora meandrina and Porites rus, and consecutive trials were used to expose them for 13 days to 26 °C, 28 °C (ambient conditions), 30 °C, or a fluctuating treatment ranging from 26 to 30 °C over 24 h. The multivariate response was assessed using maximum dark-adapted quantum yield of PSII (FV/FM), Symbiodinium density, chlorophyll-a content, and calcification. In trial 1, multivariate physiology of both species was significantly affected by treatments, with the fluctuating temperature resulting in a 17-45% decline in Symbiodinium density (relative to the ambient) matching that occurring at a constant 30 °C; FV/FM, chlorophyll-a content, and calcification, did not differ between the fluctuating and the steady treatments. In contrast, in trial 2 that utilized corals collected two weeks after those used in trial 1, the corals were unaffected by the treatments, likely due to an environment × trial interaction caused by seasonal declines in Symbiodinium density. Together, these results demonstrate that short transgressions to ecologically relevant high and low temperatures can elicit a potentially detrimental response equivalent to that occurring upon exposure to a constant high temperature. The dissimilar responses among dependent variables and consecutive trials underscore the importance of temporal replication and multivariate approaches in coral ecophysiology. It is likely that recent history has a stronger effect on the response of corals to treatments than is currently recognized.  相似文献   

13.
It has been documented in some reptiles that fluctuating incubation temperatures influence hatchling traits differently than constant temperatures even when the means are the same between treatments; yet whether the observed effects result from the thermal variance, temperature extremes or both is largely unknown. We incubated eggs of the checkered keelback snake Xenochrophis piscator under one fluctuating (Ft) and three constant (24, 27 and 30 °C) temperatures to examine whether the variance of incubation temperatures plays an important role in influencing the phenotype of hatchlings. The thermal conditions under which eggs were incubated affected a number of hatchling traits (wet mass, SVL, tail length, carcass dry mass, fatbody dry mass and residual yolk dry mass) but not hatching success and the sex ratio of hatchlings. Body sizes were larger in hatchlings from incubation temperatures of 24 and 27 °C compared with the other two treatments. Hatchlings from the four treatments could be divided into two groups: one included hatchlings from the 24 and 27 °C treatments, and the other included hatchlings from the 30 °C and Ft treatments. In the Ft treatment, the thermal variance was not a significant predictor of all examined hatchling traits, and incubation length was not correlated with the thermal variance when holding the thermal mean constant. The results of this study show that the mean rather than the variance of incubation temperatures affects the phenotype of hatchlings.  相似文献   

14.
The effects of pre-treatment of para-chlorophenylalanine (p-CPA) on sleep–wake electroencephalograms (EEG) have been demonstrated in three age groups of rats subjected to heat stress. Each age group for both p-CPA pre-treated and untreated subjects was sub-divided into three groups: (i) acute heat stress—subjected to a single heat exposure for 4 h at 38 °C; (ii) chronic heat stress—exposed for 21 days daily for 1 h in the incubator at 38 °C; and (iii) handling control groups. Digital polygraphic sleep recordings were performed just after the heat exposure from acute stressed rats and on the 22nd day from chronic stressed rats. The analyses of results demonstrated that many changes associated with sleep-EEG (either in sleep–wake parameter or in EEG frequencies) due to acute and chronic heat stress were reversed (changes were analyzed; P<0.05 or better) in p-CPA pre-treated groups of rats. However, differential observations between acute and chronic heat stress groups of subjects were recorded, which are thought to have happened due to acclimatization of subjects to the hot environment. The results of present study supported the previous hypothesis about the significant involvement of serotonin in sleep–wake parameters and also demonstrated its participation in brain electrophysiological alterations in stressed conditions.  相似文献   

15.
16.
17.
18.
Although the effects of constant temperatures on hatchling traits have been extensively studied in reptiles, the effects of fluctuating temperatures remain poorly understood. Eggs of the Chinese three-keeled pond turtle (Chinemys reevesii) were incubated at a constant temperatures (28 °C) and two fluctuating temperatures (28±3 °C and 28±6 °C) to test for the influence of thermal environment on incubation duration, hatchling traits, and post-hatching growth. Incubation duration was shorter at constant temperature than at fluctuating temperatures. The sex ratio of hatchlings varied among temperature treatments, with more females from 28±6 °C than from 28 °C. The size and mass were greater for hatchlings from a constant temperature than from fluctuating ones, but this difference in body size disappeared when the hatchlings were 3 months old. In addition, the swimming ability, survival, and growth of hatchlings from fluctuating temperatures did not differ from those of hatchlings from constant temperature, when they were kept at an artificial environment without food scarcity or predation. Therefore, the thermal environments with various temperature fluctuations used in this study do not significantly affect fitness-related hatchling traits in this species.  相似文献   

19.
In an effort to understand whether heat shock protein 70 (Hsp70) participates in the environmental 5 °C signal reception/transduction toward breaking embryonic diapause of the silkworm Bombyx mori, we isolated a cDNA for Hsp70a and examined the expression of Hsp70a mRNA in B. mori diapause and nondiapause eggs by quantitative real-time PCR. Hsp70a mRNA gradually increased in diapause eggs continuously kept at 25 °C after oviposition to maintain diapause. When diapause eggs were exposed to the diapause-terminating condition of 5 °C beginning at 2 days post-oviposition, Hsp70a mRNA increased beginning at 5 days post-cold treatment. Even in nondiapause eggs, Hsp70a mRNA increased slightly with exposure to 5 °C. These results suggest that Hsp70a is involved in reception/transduction of the diapause-terminating (5 °C) signal via gene activation. The expression patterns of Hsp70a mRNA are discussed in relation to those of the cold-response gene Samui.  相似文献   

20.
Fertility losses in male mice occur approximately 18-28 d after heat stress. The objective of this study was to identify gene expression differences in males highly versus lowly fertile after heat stress. Mature male mice were exposed to heat stress (35 ± 1 °C; n = 50) or thermoneutral (21 ± 1 °C; n = 10) conditions for 24 h (Day 0) and hemicastrated (Day 1) to collect tissue for gene expression analyses. Males were subjected to a mating test from Days 18 to 26 when variation in fertility was anticipated. A fertility index was used to rank heat-stressed males and identify those males resistant and susceptible to heat stress, respectively. Microarray analyses were conducted on testis tissues from control (n = 5), heat stress resistant (n = 5), and heat stress susceptible (n = 5) males, and 225 genes were observed to be differentially expressed (P < 0.05), including genes involved in chaperone (Canx, Hspcb1, and Tcp1) and catalytic (Fkpb6, Psma7, and Idh1) activity. Expression patterns of these genes were confirmed using real-time RT-PCR. Male progeny from selected sires were similarly divergent in fertility after heat stress. Testicular expression levels of Canx, Hspcb, and Tcp1 genes were determined in these progeny. Hspcb expression was moderately heritable (0.31 ± 0.25); however, expression patterns of Canx and Tcp1 were not heritable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号