首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The herbivorous Antarctic copepod Calanoides acutus overwinters inactively in a resting stage (diapause) at depths below 500 m. It is assumed that during diapause C. acutus is neutrally buoyant in order to retain energy reserves otherwise depleted by swimming activities. However, so far, no experimental observations on its buoyancy have been reported and our knowledge of buoyancy regulation mechanisms is incomplete. In the present study, species-specific differences in buoyancy were assessed visually. Observations were made of specimens from the diapausing cohort of C. acutus and compared to another herbivorous copepod Calanus propinquus, which overwinters actively feeding in the upper water layers. Freshly caught copepods were anaesthetized in a 3-amino-benzoic acid ethyl ester (MS222) in seawater solution in order to exclude the influence of swimming movements on buoyancy control. It was shown that C. propinquus was negatively buoyant, whereas diapausing C. acutus remained neutrally buoyant. This is the first record that neutral buoyancy in diapausing copepods is maintained by the biochemical body composition without the additional need of swimming movements.  相似文献   

4.
Heat shock proteins (HSP)are essential molecular chaperones that play important roles in the stress stimulation of insects.Bemisia tabaci,a phloem feeder and invasive species,can cause extensive crop damage through direct feeding and transmission of plant viruses.Here we employed comprehensive genomics approaches to identity HSP superfamily members in the Middle East Asia Minor 1 whitefly genome.In total,we identified 26 Hsp genes,including three Hsp90,17 Hsp70,one Hsp60 and five sHSP (small heat shock protein)genes.The HSP gene superfamily of whitefly is expanded compared with the other five insects surveyed here.The gene structures among the same families are relatively conserved.Meanwhile,the motif compositions and secondary structures of BtHsp proteins were predicted.In addition,quantitative polymerase chain reaction analysis showed that the expression patterns of BtHsp gene superfamily were diverse across different tissues of whiteflies.Most Hsp genes were induced or repressed by thermal stress (40℃)and cold treatment (4℃)in whitefly.Silencing the expression of BtHsp70-6 significantly decreased the survival rate of whitefly under 45℃.All the results showed the Hsps conferred thermo-tolerance or cold-tolerance to whiteflies that protect them from being affected by detrimental temperature conditions.Our observations highlighted the molecular evolutionary properties and the response mechanism to temperature assaults of Hsp genes in whitefly.  相似文献   

5.
6.
Abstract Developing larvae of the apple maggot Rhagoletis pomonella are frequently exposed to summertime apple temperatures that exceed 40 °C and, during their overwintering diapause, pupae are exposed to sub‐zero soil temperatures for prolonged periods. To investigate the potential involvement of heat shock proteins (Hsps) in response to these environmental extremes, the genes encoding Hsp70 and Hsp90 in R. pomonella are cloned and expression monitored during larval feeding within the apple and during overwintering pupal diapause. Larvae reared in the laboratory at constant temperatures of 25, 28 or 35 °C express Hsp90 but very little Hsp70. Larvae do not survive rearing at 40 °C. The temperature cycles to which larvae were exposed inside apples in the field, ranging 16–46.9 °C over a 24‐h period, elicit strong Hsp70 and Hsp90 expression, which begins at mid‐day and reaches a peak in late afternoon, coinciding with peak air and apple temperatures. Heat shock proteins are also expressed strongly by pupae during their overwintering diapause. Hsp70 is not expressed in nondiapausing pupae but is highly expressed throughout diapause. Hsp90 is constitutively expressed in both diapausing and nondiapausing pupae. Rhagoletis pomonella thus strongly expresses its Hsps during pupal diapause, presumably as a protection against low temperature injury, and during larval development to cope with natural temperature cycles prevailing in late summer.  相似文献   

7.
8.
In an effort to understand whether heat shock protein 70 (Hsp70) participates in the environmental 5 °C signal reception/transduction toward breaking embryonic diapause of the silkworm Bombyx mori, we isolated a cDNA for Hsp70a and examined the expression of Hsp70a mRNA in B. mori diapause and nondiapause eggs by quantitative real-time PCR. Hsp70a mRNA gradually increased in diapause eggs continuously kept at 25 °C after oviposition to maintain diapause. When diapause eggs were exposed to the diapause-terminating condition of 5 °C beginning at 2 days post-oviposition, Hsp70a mRNA increased beginning at 5 days post-cold treatment. Even in nondiapause eggs, Hsp70a mRNA increased slightly with exposure to 5 °C. These results suggest that Hsp70a is involved in reception/transduction of the diapause-terminating (5 °C) signal via gene activation. The expression patterns of Hsp70a mRNA are discussed in relation to those of the cold-response gene Samui.  相似文献   

9.
Temperature and salinity fluctuations are two of the most important factors affecting the growth of polar bacteria. In an attempt to better understand the function of heat-shock proteins (HSPs) in the adaptive mechanisms of the Antarctic psychrotrophic bacterium Psychrobacter sp. G to such conditions, genes Hsp845, Hsp2538, Hsp2666, and Hsp2667 were cloned on the basis of the draft genome. The expression characteristics of these HSP genes under different stress conditions were analyzed by the qRT-PCR method. Expression of Hsp845 and Hsp2667 was inhibited significantly by low temperature (0 and 10 °C, respectively). There was no difference of expression when Hsp2538 and Hsp2666 were exposed to 0 °C but the expression of Hsp2666 was inhibited when exposed to 10 °C. Expression of Hsp2538 and Hsp2667 was not sensitive but expression of Hsp845 and Hsp2666 was increased at low salinity (0 and 15, respectively). Expression of the four HSP genes was enhanced at high salinity (90 and 120) and at high temperature independent of salinity. By contrast, low temperature had no significant effect independent of salinity.  相似文献   

10.
Heat shock protein gene (Hsp) families are thought to be important in thermal adaptation, but their expression patterns under various thermal stresses have still been poorly characterized outside of model systems. We have therefore characterized Hsp genes and their stress responses in the oriental fruit moth (OFM), Grapholita molesta, a widespread global orchard pest, and compared patterns of expression in this species to that of other insects. Genes from four Hsp families showed variable expression levels among tissues and developmental stages. Members of the Hsp40, 70, and 90 families were highly expressed under short exposures to heat and cold. Expression of Hsp40, 70, and Hsc70 family members increased in OFM undergoing diapause, while Hsp90 was downregulated. We found that there was strong sequence conservation of members of large Hsp families (Hsp40, Hsp60, Hsp70, Hsc70) across taxa, but this was not always matched by conservation of expression patterns. When the large Hsps as well as small Hsps from OFM were compared under acute and ramping heat stress, two groups of sHsps expression patterns were apparent, depending on whether expression increased or decreased immediately after stress exposure. These results highlight potential differences in conservation of function as opposed to sequence in this gene family and also point to Hsp genes potentially useful as bioindicators of diapause and thermal stress in OFM.  相似文献   

11.
Drosophila grisea and macroptera were collected in caves overwintering as adults. The females remained in a state of reproductive diapause which extended until May for macroptera and until July for grisea, whereas the males of both species had mature sperm at all times. Termination of the reproductive diapause under laboratory conditions was accomplished in grisea by exposing them to 14 hr of illumination daily and in macroptera by increasing the temperature to 20°C. Topical application of juvenile hormone (JH) on diapausing grisea caused a prompt termination of diapause and maturation of oöcytes within 10 days. Yolk proteins were found in the haemolymph of diapausing flies but not in their ovaries. In the JH-treated flies, yolk proteins were found in both the haemolymph and the ovaries, suggesting that in this species JH regulates the uptake of yolk proteins.  相似文献   

12.
13.
The marine algal biotoxin, domoic acid (DA), is produced by certain members of the diatom genus Pseudo-nitzschia. This neurotoxin has been responsible for several mass mortality events involving marine birds and mammals. In all cases, the toxin was transferred from its algal producers through marine food webs by one or more intermediate vectors. The ability of some copepod taxa to serve as vectors for DA has been demonstrated; however, the role played in DA trophic transfer by Calanus finmarchicus, which often dominates N. Atlantic zooplankton assemblages and is a primary dietary component of the highly endangered N. Atlantic right whale (Eubalaena glacialis), has been uncertain. In the present study, we examined the ability of C. finmarchicus to consume DA-producing algae and retain the toxin. Results of grazing and toxin accumulation/depuration experiments showed that C. finmarchicus consumed DA-producing Pseudo-nitzschia multiseries regardless of the presence or absence of morphologically similar, but non-toxic, P. pungens, across initial cell concentrations ranging from 1000-4000 cells mL− 1. Furthermore, C. finmarchicus did not appear to preferentially consume or avoid either Pseudo-nitzschia species tested. After ingestion of P. multiseries, copepods accumulated DA and retained it for up to 48 h post-removal of the toxin source. These findings provide evidence for the potential of C. finmarchicus to facilitate DA trophic transfer in marine food webs where toxic Pseudo-nitzschia is present.  相似文献   

14.
The expression of metabolic enzyme genes and heat-shock protein genes (Hsp) during early embryogenesis in diapause and non-diapause eggs of the silkworm Bombyx mori was quantified by semi-quantitative RT-PCR. The trehalase gene (Tre) was expressed in non-diapause eggs up-to nine days, while in diapause eggs was not up regulated. The glycogen phosphorylase gene (GPase) was expressed in non-diapause eggs, whereas in diapause eggs a high level was observed in early stage, but down regulated in later stage. The phosphofructokinase gene (PFK) and sorbitol dehyrogenase-2 gene (SDH-2) expression was fluctuated in non-diapause eggs, whereas in diapause eggs these were expressed only at early stage and not observed in later stage. The glucose-6-phosphate dehydrogenase gene (G6P-DH) in non-diapause eggs was highly expressed during the differentiation phase and decreased in the organogenesis phase. In contrast to this, expression in diapause eggs was of low level during differentiation phase and of high level observed in the organogenesis phase. In the tissues, PFK and SDH-2 were selectively expressed in cuticle and midgut, whereas Tre expression was high in midgut and ovary of larvae incubated at 15°C. The Hsp (20.4, 20.8, 40, 70, and 90) were expressed in both diapause and non-diapause eggs. Their expression was, however, selective in tissues with Hsp20.4 in midgut and ovary, Hsp40 in head, Hsp70 in cuticle and Hsp90 in ovary and head in high amounts at 15°C. These results suggest that the metabolic enzyme genes studied except Hsp play a major role during embryogenesis of diapause and non-diapause silkworm.  相似文献   

15.
16.
17.
Eggs of the American horseshoe crab, Limulus polyphemus L., develop on sandy estuarine beaches during the spring and summer, and are potentially vulnerable to thermal stress during the 3-4 weeks of development to the first instar (trilobite) larval stage. In many marine taxa, heat shock (stress) proteins (Hsp's) help individuals acclimate to stresses by restoring the proper folding of cellular proteins whose shape has been altered by temperature shock or other forms of environmental stress. We examined the survival of embryos and first instar (trilobite) larvae following heat shock, and compared the levels of Hsp70 in heat shocked and control animals. Animals acclimated to 13 or 22 °C had close to 100% survival when heat shocked for 3 h at 35 or 40 °C, but exposure to 45 °C for 3 h was lethal. To study the effect of heat shock on Hsp70 production under environmentally realistic conditions, animals were acclimated to either 13 or 22 °C, heat-shocked at 35 °C for 3 h, and soluble proteins were extracted following 0, 2, 4, or 6 h recovery at 22 °C. The relative amounts of Hsp70 in horseshoe crab embryos and larvae were examined using SDS-PAGE and Western blotting. Relative to controls animals held at a constant temperature, there was a slight elevation of Hsp70 only among heat shocked trilobite larvae in the 6 h recovery treatment. Hsp70 levels did not differ significantly between control and heat shocked embryos. Horseshoe crabs have adapted to living in a thermally stressful environment by maintaining a high baseline (constitutive) level of cellular stress proteins such as Hsp70, rather than by synthesizing inducible Hsp's when stressful temperatures are encountered. This may be an effective strategy given that the heat shocks encountered by intertidal embryos and larvae occur regularly as a function of diurnal and tidal temperature changes.  相似文献   

18.
A comparison of the cDNA sequences (1 056 bp) of Bombyx mori DnaJ 5 homolog with B. mori genome revealed that unlike in other Hsps, it has an intron of 234 bp. The DnaJ 5 homolog contains 351 amino acids, of which 70 contain the conserved DnaJ domain at the N-terminal end. This homolog orB. mori has all desirable functional domains similar to other insects, and the 13 different DnaJ homologs identified in B. mori genome were distributed on different chromosomes. The expressed sequence tag database analysis of Hsp40 gene expression revealed higher expression in wing disc followed by diapause-induced eggs. Microarray analysis revealed higher expression of DnaJ 5 homolog at 18th h after oviposition in diapause-induced eggs. Further validation of DnaJ 5 expression through qPCR in diapause-induced and nondiapause eggs at different time intervals revealed higher expression in diapause eggs at 18 and 24 h after oviposition, which coincided with the expression of Hsp70 as the Hsp 40 is its co-chaperone. This study thus provides an outline of the genome organization of lisp40 gene, and its role in egg diapause induction in B. mori.  相似文献   

19.
Luteolin (3,4,5,7-tetrahydroxyflavones), a major dietary flavone, regulates a variety of biological effects including cancer progression, insulin resistance and inflammation. However, its exact actions on adipogenesis and osteogenesis and the underlying molecular mechanisms are yet to be clarified. In this study, we show that luteolin suppresses lipid accumulation but increases osteoblast differentiation. In mechanism studies, luteolin increases the expression of the heat shock proteins (Hsp) 40 (Dnajb1) and Hsp90 (Hsp90b1), but not those of other heat shock proteins including Hsp20, Hsp27, Hsp47, Hsp70, Hsp72, and Hsp90, and another type of Hsp40 (Dnaja1). Silencing Dnajb1 by using small interfering RNAs (siRNAs), but not against Hsp90b1, recapitulates the effects of luteolin in adipocyte and osteoblast differentiation. Consistently, the forced expression of Dnajb1 decreases the lipid accumulation and stimulates alkaline phosphatase (ALPL) activity. The antiadipogenic and proosteogenic effects of luteolin are significantly blunted in Dnajb1-deficient cells, further suggesting that Dnajb1 is, at least in part, required for luteolin's dual actions in adipogenesis and osteogenesis. Together, our data implicate luteolin as an ingredient and Dnajb1 as a molecular target for the development of functional foods and drugs in metabolic and bone-related diseases.  相似文献   

20.
Astthor Gislason 《Hydrobiologia》2003,503(1-3):195-209
Abundance and seasonal vertical distribution of dominant zooplankters in the Irminger Sea was studied from data collected during four cruises between November 1996 and June 1997. In addition, egg production of Calanus finmarchicus was measured during winter, spring and summer 1996–2001. Five taxa constituted >95% of the copepod biomass, C. finmarchicus, Pareuchaeta norvegica, C. hyperboreus, Oithona spp. and Oncaea spp. A seasonal migration pattern was evident for C. finmarchicus, P. norvegica and Oithona spp.: from December to February, they inhabited the deeper layers, whereas, from April to June, they were most abundant in the upper layers. Oncaea spp. also stayed deep during winter and only a very limited part of the population rose to the surface during summer. C. hyperboreus remained deep from December to April, but had virtually disappeared in June. Reproduction of C. finmarchicus took place in May in the surface layers and was linked to the phytoplankton spring bloom. In contrast, reproduction of P. norvegica occurred at depth in February and was uncoupled with the spring bloom. C. hyperboreus did not reproduce in the Irminger Sea. Data on Oithona spp. and Oncaea spp. indicated that the former reproduced between April and June in the upper layers, whereas the latter reproduced year-round at depth. Thus, data on vertical distribution and seasonal stage composition suggested that the dominant copepods are separated, at least partly, at spatial and temporal scales with regard to overwintering and development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号