首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In order to explore the function of heat shock proteins during thermal stress in rice weevil, Sitophilus oryzae, four heat shock protein genes were cloned and characterized. These heat shock protein genes (hsps) were named as Sohsp70–1, Sohsp70–2, Sohsc70, and Sohsp90, respectively. These hsps showed high sequence conservation with the maximum identity with hsps of Tribolium castaneum and other insects. All the four genes showed the highest mRNA expression in pupal stage and the lowest levels in larval stage. The induced expression of the two Sohsp70s (Sohsp70–1 and Sohsp70–2) were reached to the highest levels (15.59-fold and 12.66-fold) after 2?h of incubation at 37?°C, respectively. Expression of Sohsp90 not only was significantly elevated by heat stress but also by cold stress. Whereas, expression level of Sohsc70 was not induced either by heat or cold stress. Furthermore, for rapid heat hardening, the expression levels of Sohsp70–1, Sohsp70–2, Sohsc70 and Sohsp90 were observed as 2.57, 2.53, 3.33 and 2.33-fold higher than control, respectively; for rapid cold hardening, the expression levels of Sohsp70–1, Sohsp70–2, Sohsc70 and Sohsp90 were reported as 2.27, 3.02, 3.37 and 2.23-fold higher than control, respectively. Hence, our results revealed that the four Sohsps were associated with temperature adaption under rapid heat or cold hardening.  相似文献   

2.
3.
The expression and localization of four heat shock proteins (Hsp70, Hsp86, Hsp90, and Hsp27) were shown in the heart tissue of pigs transported for 6 h. Immunostaining detected the consistent presence of all Hsps in the pig myocardial cells under both transported and normal housing conditions. Immunohistochemical analysis revealed predominance of Hsp70 (significantly highest levels) and Hsp27 in the cytoplasm of myocardial cells. Hsp90 and Hsp86 were expressed both in the cytoplasm and in the nucleus, preferentially in the cytoplasm, of the myocardial cells. In view of their abundant and uniform distributions in the myocardial cells, the expression and distribution patterns of all detected Hsps within the myocardial cells, mostly limited to the cytoplasm, could be related to their chaperone function for cells with important special activities in this study. The identification of all four Hsps in the blood vessel endothelial cells possibly implies that endothelial cells react to ischemia and hypoxia by expressing Hsps. Immunoblot findings suggest that the level of all Hsps decreased in response to stress due to a 6 h journey. The decrease in Hsp levels in the myocardial cells may indicate that the transport stress may have overcharged the repair mechanisms of the cells. Whether this distinct depletion of Hsps contributes to an increased susceptibility to acute heart failure and the sudden death syndrome in transported pigs should be elucidated in future experiments.  相似文献   

4.
5.
6.
The stress response of PC12 cells was characterized by evaluating the production of heat shock proteins of the 70 kDa (Hsp70), 60 kDa (Hsp60) and 90 kDa (Hsp90) families by western blot analysis. Induction of Hsp synthesis was elicited by brief exposure to elevated temperatures or by addition of ethanol to the cultures. Normal PC12 cells responded to stress with rapid up-regulation of Hsp70 and Hsp60 production. However, fully differentiated PC12 cells (induced by nerve growth factor, NGF) failed to produce Hsp70 or Hsp60 in response to heat or ethanol treatment. The disappearance of the heat shock response of the cells was directly related to the extent of neuronal differentiation. The cellular levels of the constitutive proteins, Hsc70 and Hsp90, were not altered by differentiation of the cells. Production of Hsps was restored in the differentiated cells by removal of NGF which coincided with the loss of neurite expression and retraction of processes.  相似文献   

7.
The aim of this study was to investigate the effects of cold stress on oxidative indexes, immune function, and the expression levels of heat shock protein (Hsp90, Hsp70, Hsp60, Hsp40, and Hsp27) in immune organs of chickens. Two hundred forty 15-day-old male chickens were randomly divided into 12 groups and kept under the temperature of (12 ± 1) °C for acute and chronic cold stress. There were one control group and five treatment groups for acute cold stress and three control groups and three treatment groups for chronic cold stress. The results showed that cold stress influence the activities of antioxidant enzymes in the immune organs. The activities of SOD and GSH-Px were first increased then decreased, and activity of total antioxidation capacity (T-AOC) was significantly decreased (P < 0.05) at the acute cold stress in chicks; however, T-AOC activities were significantly increased (P < 0.05) at the chronic cold stress in these tissues. Cold stress induced higher level of malondialdehyde (MDA) in chicken immune organs. In addition, the cytokine contents were increased in cold stress groups. As one protective factor, the expression levels of Hsps were increased significantly (P < 0.05) in both cold stress groups. These results suggested that cold stress induced the oxidative stress in the three tissues and influenced immune function of chicks. Higher expression of Hsps (Hsp90, Hsp70, Hsp60, Hsp40, and Hsp27) may play a role in protecting immune organs against cold stress.  相似文献   

8.
Heat shock protein (Hsp) genes are stress-related genes that activate the host immune system during infection. Hsp genes expression in fish, studied during bacterial infections, is mostly confined to Hsp70 and Hsp90. The present study is an expression analysis of seven Hsp genes: Apg2, Hsp90, Hsp70, glucose-regulated protein 78 (Grp78), heat shock cognate 70 (Hsc70), Grp75, and Hsp30 during Aeromonas hydrophila infection in rohu, Labeo rohita. Forty-eight rohu juveniles were challenged with 3 × 107 cfu bacteria per 20 g of body weight intraperitoneally. The expression of these genes was studied in infected liver, anterior kidney, and spleen tissues of rohu at different time periods: 0, 1, 3, 6, 12, 24, 48, 72 h, 7, and 15 days post-infection by qPCR. The Hsp gene modulation was greater in liver as compared to spleen and kidney tissues. Induced expression of Apg2, Hsp90, Grp78, Grp75, and Hsc70 was noticed during peak periods (3 to 24 h post-challenge) of bacterial infectivity. Hsp70 was found to be down-regulated during the process of infection. In contrast to the other six genes, Hsp30 showed a variable expression pattern in all three tissues. Grp78 was found to be the most highly (1,587-fold) expressed gene in liver at 12 h post-challenge. Further, molecular characterization of Grp78 revealed it to be a highly conserved Hsp gene, essential not only during infection but also during early developmental stages of rohu, and its expression was noticed in all organs studied except in gill tissues, which indicated its potential immune regulatory role during infection process.  相似文献   

9.
The aim of this study was to investigate the effects of cold stress on the expression levels of heat shock proteins (Hsps90, 70, 60, 40, and 27) and inflammatory factors (iNOS, COX-2, NF-κB, TNF-α, and PTGEs) and oxidative indexes in hearts of chickens. Two hundred forty 15-day-old male chickens were randomly divided into 12 groups and kept at the temperature of 12 ± 1 °C for acute and chronic cold stress. There were one control group and five treatment groups for acute cold stress, three control groups, and three treatment groups for chronic cold stress. After cold stress, malondialdehyde level increased in chicken heart; the activity of superoxide dismutase and glutathione peroxidase in the heart first increased and then decreased. The inflammatory factors mRNA levels were increased in cold stress groups relative to control groups. The histopathological analysis showed that heart tissues were seriously injured in the cold stress group. Additionally, the mRNA levels of Hsps (70, 60, 40, and 27) increased significantly (P < 0.05) in the cold stress groups relative to the corresponding control group. Meanwhile, the mRNA level and protein expression of Hsp90 decreased significantly (P < 0.05) in the stress group, and showed a gradually decreasing tendency. These results suggested that the levels of inflammatory factors and Hsps expression levels in heart tissues can be influenced by cold stress. Hsps commonly played an important role in the protection of the heart after cold stress.  相似文献   

10.
Three heat shock protein (HSP) genes (hsp70, hsc70, hsp90) were partially cloned from the brown planthopper Nilaparvata lugens and the small brown planthopper Laodelphax striatellus (Homoptera: Delphacidae), which are serious pests of the rice plant. Sequence comparisons at the deduced amino acid level showed that the three HSPs of planthoppers were most homologous to corresponding HSPs of dipteran and lepi‐dopteran species. Identities of both heat shock cognate 70 and HSP90 were higher than HSP70 in both species. Identity of the HSP70 between the two planthopper species was only 81%, a value much lower than seen among fly and moth groups. Effects of heat and cold shocks were demonstrated on expression of the three hsp genes in the two planthopper species. Heat shock (40 °C) upregulated the hsp90 level but did not change the hsc70 level in either the nymph and adult stages of either species. On the other hand, the hsp70 level was only upregulated in L. striatellus. This heat shock response was prompt and lasted only for 1 h after treatment. In contrast, cold shock at 4°C did not change the expression levels of any hsp in either species.  相似文献   

11.
12.

Background

Heat shock proteins (Hsps) perform a fundamental role in protecting plants against abiotic stresses. Although researchers have made great efforts on the functional analysis of individual family members, Hsps have not been fully characterized in rice (Oryza sativa L.) and little is known about their interactors.

Results

In this study, we combined orthology-based approach with expression association data to screen rice Hsps for the expression patterns of which strongly correlated with that of heat responsive probe-sets. Twenty-seven Hsp candidates were identified, including 12 small Hsps, six Hsp70s, three Hsp60s, three Hsp90s, and three clpB/Hsp100s. Then, using a combination of interolog and expression profile-based methods, we inferred 430 interactors of Hsp70s in rice, and validated the interactions by co-localization and function-based methods. Subsequent analysis showed 13 interacting domains and 28 target motifs were over-represented in Hsp70s interactors. Twenty-four GO terms of biological processes and five GO terms of molecular functions were enriched in the positive interactors, whose expression levels were positively associated with Hsp70s. Hsp70s interaction network implied that Hsp70s were involved in macromolecular translocation, carbohydrate metabolism, innate immunity, photosystem II repair and regulation of kinase activities.

Conclusions

Twenty-seven Hsps in rice were identified and 430 interactors of Hsp70s were inferred and validated, then the interacting network of Hsp70s was induced and the function of Hsp70s was analyzed. Furthermore, two databases named Rice Heat Shock Proteins (RiceHsps) and Rice Gene Expression Profile (RGEP), and one online tool named Protein-Protein Interaction Predictor (PPIP), were constructed and could be accessed at http://bioinformatics.fafu.edu.cn/.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-344) contains supplementary material, which is available to authorized users.  相似文献   

13.
14.
15.
The aim of this study was to elucidate the mechanisms for regulations of cardiac Kv1.5 channel expression. We particularly focused on the role of heat shock proteins (Hsps). We tested the effects of Hsps on the stability of Kv1.5 channels using biochemical and electrophysiological techniques: co-expression of Kv1.5 and Hsp family proteins in mammalian cell lines, followed by Western blotting, immunoprecipitation, pulse-chase analysis, immunofluorescence and whole-cell patch clamp. Hsp70 and heat shock factor 1 increased the expression of Kv1.5 protein in HeLa and COS7 cells, whereas either Hsp40, 27 or 90 did not. Hsp70 prolonged the half-life of Kv1.5 protein. Hsp70 was co-immunoprecipitated and co-localized with Kv1.5-FLAG. Hsp70 significantly increased the immunoreactivity of Kv1.5 in the endoplasmic reticulum, Golgi apparatus and on the cell membrane. Hsp70 enhanced Kv1.5 current of transfected cells, which was abolished by pretreatment with brefeldin A or colchicine. Thus, Hsp70, but not other Hsps, stabilizes functional Kv1.5 protein.  相似文献   

16.
Heat shock protein gene (Hsp) families are thought to be important in thermal adaptation, but their expression patterns under various thermal stresses have still been poorly characterized outside of model systems. We have therefore characterized Hsp genes and their stress responses in the oriental fruit moth (OFM), Grapholita molesta, a widespread global orchard pest, and compared patterns of expression in this species to that of other insects. Genes from four Hsp families showed variable expression levels among tissues and developmental stages. Members of the Hsp40, 70, and 90 families were highly expressed under short exposures to heat and cold. Expression of Hsp40, 70, and Hsc70 family members increased in OFM undergoing diapause, while Hsp90 was downregulated. We found that there was strong sequence conservation of members of large Hsp families (Hsp40, Hsp60, Hsp70, Hsc70) across taxa, but this was not always matched by conservation of expression patterns. When the large Hsps as well as small Hsps from OFM were compared under acute and ramping heat stress, two groups of sHsps expression patterns were apparent, depending on whether expression increased or decreased immediately after stress exposure. These results highlight potential differences in conservation of function as opposed to sequence in this gene family and also point to Hsp genes potentially useful as bioindicators of diapause and thermal stress in OFM.  相似文献   

17.
Alachlor is a widely used pre-emergent chloroacetanilide herbicide which has been shown to have many harmful ecological and environmental effects. However, the mechanism of alachlor-induced oxidative stress is poorly understood. We found that, in Saccharomyces cerevisiae, the intracellular levels of reactive oxygen species (ROS) including superoxide anions were increased only after long-term exposure to alachlor, suggesting that alachlor is not a pro-oxidant. It is likely that alachlor-induced oxidative stress may result from protein denaturation because alachlor rapidly induced an increased protein aggregation, leading to upregulation of SSA4 and HSP82 genes encoding heat shock proteins (Hsp) of Hsp70 and Hsp90 family, respectively. Although only SOD1 encoding Cu/Zn-superoxide dismutase (SOD), but not SOD2 encoding Mn-SOD, is essential for alachlor tolerance, both SODs play a crucial role in reducing alachlor-induced ROS. We found that, after alachlor exposure, glutathione production was inhibited while its utilization was increased, suggesting the role of glutathione in protecting cells against alachlor, which becomes more important when lacking Cu/Zn-SOD. Based on our results, it seems that alachlor primarily causes damages to cellular macromolecules such as proteins, leading to an induction of endogenous oxidative stress, of which intracellular antioxidant defense systems are required for elimination.  相似文献   

18.

Heat shock proteins or Hsps are critical in mounting plant resistance against heat stress. The complex Hsp spectrum of Arabidopsis thaliana plant contains over two hundred proteins belonging to six different families namely Hsp20, Hsp40, Hsp60, Hsp70, Hsp90 and Hsp100. Importantly, the cellular function(s) of most Hsps remains to be established. We aimed at phenotyping of stress and development response of the selected, homozygous hsp mutant lines produced by T-DNA insertional mutagenesis method. The heat stress phenotype was assessed for basal and acquired heat stress response at seed and seedling stages. Distinct phenotype was noted for the hot1-3 mutant (knockout mutant of Hsp101 gene) showing higher heat sensitivity and for the salk_087844 mutant (knockout mutant of Hsc70-2 gene) showing higher heat tolerance than the wild type seedlings. The homozygous cs808162 mutant (mutant of ClpB-p gene encoding for the chloroplast-localized form of Hsp101) did not survive even under unstressed, control condition. salk_064887C mutant (mutant of cpn60β4 gene) showed accelerated development cycling. The hot1-3 mutant apart from showing different heat response, exhibited development lesions like bigger size of seeds, buds, siliques, and pollen compared to the wild type plants. In response to controlled deterioration treatment of seeds, hot1-3 seeds showed higher accumulation of reactive oxygen species molecules, higher rates of protein and lipid oxidation and a faster decline in germination rate as compared to wild type seeds. Our findings show that Hsps perform diverse metabolic functions in plant response to stress, growth, and development.

  相似文献   

19.
20.
Selenium (Se) is necessary for the immune system in chicken and mediates its physiological functions through selenoproteins. Heat shock proteins (Hsps) are indispensable for maintaining normal cell function and for directing the immune response. The aim of the present study was to investigate the effects of Se deficiency on the messenger ribonucleic acid (mRNA) expression levels of selenoproteins and Hsps as well as immune functions in the chicken bursa of Fabricius. Two groups of chickens, namely the control and Se-deficient (L group) groups, were reared for 55 days. The chickens were offered a basal diet, which contained 0.15 mg Se/kg in the diet fed to the control group and 0.033 mg Se/kg in the diet fed to the L group. We performed real-time quantitative polymerase chain reactionto detect the mRNA expression levels of selenoproteins and Hsps on days 15, 25, 35, 45 and 55. Western blotting was used to determine the protein expression levels of Hsps on days 35, 45 and 55, and immune functions were assessed through an enzyme-linked immunosorbent assay on days 15, 35, and 55. The data showed that the mRNA expression levels of selenoproteins, such as Txnrd1, Txnrd2, Txnrd3, Dio1, Dio2, Dio3, GPx1, GPx2, GPx3 GPx4, Sepp1, Selo, Sel-15, Sepx1, Sels, Seli, Selu, Selh, and SPS2, were significantly lower (P < 0.05) in the L group compared with the control group. Additionally, the mRNA and protein expression levels of Hsps (Hsp27, Hsp40, Hsp60, Hsp70, and Hsp90) were also significantly higher (P < 0.05) in the L group. The expression levels of IL-2, IL-6, IL-8, IL-10, IL-17, IL-1β, IFN-α, IFN-β, and IFN-γ were significantly lower (P < 0.05) and TNF-α was significantly higher (P < 0.05) in the L group compared with the control group. Our results show that immunosuppression was accompanied by a downregulation of mRNA expression levels of selenoproteins and an upregulation of the Hsp mRNA expression levels. Thus, Se deficiency causes defects in the chicken bursa of Fabricius, and selenoproteins and Hsps play important roles in immunosuppression in the bursa of Fabricius of chickens with Se deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号