首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The role of Pseudomonas aeruginosa elastase B in activation of the humoral immune response in Galleria mellonella larvae was investigated. The results of our study showed that elastase B injected at a sublethal concentration was responsible for eliciting the humoral immune response in G. mellonella larvae. The insects exhibited increased antibacterial activity, namely, we observed appearance of antimicrobial peptides and a higher level of lysozyme in cell-free hemolymph. Elastase B seems to be a more potent elicitor than thermolysin because similar maximal antibacterial activity levels were observed at a 5-fold lower concentration. We also demonstrated that there were differences in the kinetics of induction of antimicrobial activity between thermolysin and elastase B. The maximum level was observed 18 h post challenge of thermolysin and 38 h after injection of elastase B. It was also shown that, 24 h after elastase injection, the relative levels of apoLp-III in the hemolymph significantly increased in comparison with control G. mellonella larvae. The activation of immune responses in metalloproteinase-challenged larvae involved synthesis of metalloproteinase inhibitors which increased the survival rates of insects both against the lethal dose of thermolysin as well as against viable pathogenic bacterial cells of P. aeruginosa.  相似文献   

2.
Effect of envenomation of ectoparasitoid Bracon hebetor was determined on the heart rate and the expression of shsp, hsc70 and hsp90 of the lepidopteran host Plodia interpunctella. Envenomated host larvae were promptly immobilized but heart rate was not changed until 4 days after envenomation. Northern hybridization showed that each hsp gene was differentially influenced by envenomation: continued high induction of shsp, gradual strong induction of hsc70, but no induction of hsp90. Our results suggest that upregulation of both shsp and hsc70 may produce potent factors that have important roles in the mechanism of host-parasitoid relationship.  相似文献   

3.
The antibacterial immune response of the wax moth, Galleria mellonella, was analysed by use of an inhibition zone plate assay. We demonstrated significant stage-specific differences as the immune response was most effective in the pupal, next the larval and then the adult stage. In addition, we demonstrated that an immune challenge at the onset of, or during metamorphosis does not increase nor decrease the strength of the antibacterial immune response in the subsequent developmental stage(s). These findings illustrate that induced immunity is not preserved during metamorphosis but also deny any cost to the immune system itself. However, an immune challenge does induce a significant shortening of the direct development time and affects the mass loss during metamorphosis in a sex-dependent manner: males emerged smaller whereas the mass of females was not significantly affected. These observations indicate that there are sex-specific costs to mounting an immune response during metamorphosis which affect physiological traits, implicating a trade-off between immunity and development.  相似文献   

4.
The complete amino acid sequence of apolipophorin-III (apoLp-III), a lipid-binding hemolymph protein from the greater wax moth,Galleria mellonella, was determined by protein sequencing. The mature protein consists of 163 amino acid residues forming a protein of 18,075.5 Da. Its sequence is similar to apoLp-III from other Lepidopteran species, but remarkably different from the apoLp-IIIs of insects from other orders. As shown by mass spectrometric analysis, the protein carries no modifications. Thus, all of its known physiological functions, including its recently discovered immune response-stimulating activity, must reside in the protein itself.  相似文献   

5.
The bacterium Bacillus thuringiensis (Bt) is a pathogen of many insect species and is actively used in biocontrol. After the peroral inoculation of Galleria mellonella by the Bt in 5% sublethal concentration (LC5), a 1.5-fold increase in the phagocytic activity of infected larvae has been registered on the second and third days after the inoculation. With the increase of Bt-inoculum amount to 15% of sublethal concentration (LC15), a further increase of the phagocytic activity and enhanced encapsulation rates in the haemolymph of infected larvae has been observed. The enhanced cellular immunity during the bacteriosis seems to have resulted from the destruction of midgut epithelium cells followed by the subsequent exposure of gut content to lymph factors activating the immune system of haemocoel.  相似文献   

6.
7.
A selected panel of 13 colonies of entomopathogenic fungus Conidiobolus coronatus representing 6 variants of pathogenicity to Galleria mellonella larvae (ranged from 100 to 10% of efficiency), derived from single spores, were tested for the presence of hypervariable loci in their genomes by hybridization with Jeffreys' human minisatellite probe 33.6. The probe produced informative fingerprints and revealed slight differences among colonies analyzed. Up to 20 variable bands per colony were recognized in the size range of 2-20 kb. The band sharing within groups with the same pathogenicity ranged from 0.966 to 0.800. The genetic distance between different variants ranged from 0.026 to 0.282. A few characteristic bands for high and low pathogenicity to the larvae were found.  相似文献   

8.
Protein kinase A (PKA) activity was detected in the fat body of Galleria mellonella larvae by a non-radioactive method using a specific peptide substrate-kemptide. The enzyme activity was stimulated by cAMP and its analogues: BzcMP, 8-Chl-cAMP and 8-Br-cAMP in concentrations of 1-4muM. Cyclic GMP was not effective in PKA activation. A two-fold increase in PKA activity was detected in the fat body of G. mellonella LPS-challenged larvae. Selective, membrane-permeable PKA inhibitors, H89 and Rp-8-Br-cAMPS, inhibited protein kinase A activity in the fat body of G. mellonella larvae in vitro and in vivo. The inhibition of PKA activity in vivo was correlated with a considerable lowering of haemolymph antibacterial activity and a decrease in lysozyme content in the fat body of immune challenged larvae. The use of phospho-motif antibodies recognising PKA phosphorylation consensus site allowed identification of four potential PKA phosphorylation substrates of 79, 45, 40 and 36kDa in G. mellonella fat body.  相似文献   

9.
Live adult and juvenile entomopathogenic Steinernema carpocapsae DD136 (P. Nematoda) were not subjected to adhesion by haemocytes of lepidopteran insect larvae of Galleria mellonella or Malacosoma disstriain vitro or in vivo. In vitro freeze-killed nematodes exhibited haemocyte attachment, the intensity increasing with time. Accumulation of haemocytes on the dead nematodes was associated with host phenoloxidase activity; live nematodes and their exudates did not activate the enzyme whereas dead nematodes but not their exudate did activate phenoloxidase. Live-nematode exudate inhibited granular cell and some plasmatocyte adhesion to slides, increased granular cell but not plasmatocyte dissociation from preformed haemocyte monolayers and in vivo elevated total haemocyte counts and changed the floating haemocyte types while impairing bacterial removal from the haemolymph. Dead-nematode exudate did not affect these parameters thus immunosuppressant activity by live nematodes may represent the release of inhibitors not associated with their cuticle. The third stage juveniles released the inhibitors.  相似文献   

10.
Entomopathogenic nematodes (EPNs) in the genera Steinernema and Heterorhabditis and their associated bacteria (Xenorhabdus spp. and Photorhabdus spp., respectively) are lethal parasites of soil dwelling insects. We collected 168 soil samples from five provinces, all located in southern Thailand. Eight strains of EPNs were isolated and identified to species using restriction profiles and sequence analysis. Five of the isolates were identified as Heterorhabditis indica, and one as Heterorhabditis baujardi. Two undescribed Steinernema spp. were also discovered which matched no published sequences and grouped separately from the other DNA restriction profiles. Behavioral tests showed that all Heterorhabditis spp. were cruise foragers, based on their attraction to volatile cues and lack of body-waving and standing behaviors, while the Steinernema isolates were more intermediate in foraging behavior. The infectivity of Thai EPN strains against Galleria mellonella larvae was investigated using sand column bioassays and the LC(50) was calculated based on exposures to nematodes in 24-well plates. The LC(50) results ranged from 1.99-6.95 IJs/insect. Nine centimeter columns of either sandy loam or sandy clay loam were used to determine the nematodes' ability to locate and infect subterranean insects in different soil types. The undescribed Steinernema sp. had the greatest infection rate in both soil types compared to the other Thai isolates and three commercial EPNs (Heterorhabditis bacteriophora, Steinernema glaseri and Steinernema riobrave).  相似文献   

11.
Thanatephorus cucumeris is a ubiquitous fungus responsible for many types of plant diseases worldwide. All isolates from infected Hevea brasiliensis trees secreted pectolytic enzymes; polygalacturonase (PG), pectin lyase (PL) and cellulolytic enzymes; beta-glucosidase and cellobiase in culture. The extracts of the rubber tree leaf tissues, inoculated with T. cucumeris did not show any PG activity. However, PL activity was detected in tissue with the establishment of the infection. The levels of beta-glucosidase, an inherent enzyme in Hevea spp. increased rapidly following infection. However, cellobiase was detected only with the initiation of infection. Molecular weights of PG in all isolates were similar and in the range of 53,000 to 58,000. PL also followed the same pattern showing a molecular weight around 39,000.  相似文献   

12.
Studies with Galleria mellonella larvae and the iron chelating agent EDDA showed that iron was essential for the removal of dead Xenorhabdas nematophila and Bacillus subtilis from the haemolymph. The delay in removal of the bacteria from the iron-restricted haemolymph was attributed to reduced adhesiveness of the haemocytes and prophenoloxidase activity. Iron augmentation returned these activities to control levels. Whereas dead B. subtilis had no effect on the concentration of ferrozine-detectable iron (henceforth iron) in the haemolymph, dead X. nematophila was associated with substantially lower levels of iron as the number of damaged haemocytes increased. Haemocyte lysate lowered the concentrations of iron in both FeCl3 solutions and deproteinized larval serum independent of serum lipids. Haemocyte lysate added to tryptic soybroth lowered the level of iron and limited the growth of X. nematophila. X. nematophila limited iron availability in the plasma by releasing lipopolysaccharides; such a mechanism may be a means of impairing the antimicrobial defences of the insects.  相似文献   

13.
An essential component of the insect cellular response is phagocytosis. Analyses of the in vitro phagocytosis could be useful for the studies of the relationship between insects and their pathogens. Fungal metabolites are known to inhibit phagocytosis whereas components of the fungal cell wall stimulate phagocytosis. To achieve a better understanding of fungal pathogenesis in insects, haemocyte populations of two insect species susceptible to Conidiobolus coronatus infection (Galleria mellonella, Dendrolimus pini ) were compared with haemocytes of the resistant species (Calliphora erythrocephala ). Fungal infection increased phagocytic activity of G. mellonella plasmatocytes 3.3 times and this of D. pini plasmatocytes 2.1 times. Analysis of infected C. erythrocephala larvae did not reveal any influence of C. coronatus upon phagocytic activity.  相似文献   

14.
Infection of Galleria mellonella larvae with the entomopathogenic nematodes Steinernema feltiae (A21 and R strains) and Steinernema glaseri (Dongrae) resulted in several species of bacteria, including the respective bacterial symbiont, Xenorhabdus spp., growing in the infected insect cadavers. These other bacteria were Enterococcus in all three nematode infections studied and Acinetobacter in the S. feltiae infections. The respective populations of these bacteria changed with time. Following infection of G. mellonella larvae with any one of the Steinernema sp., only Enterococcus bacteria were detected initially in the dead larvae. Between 30 and 50h post-infection Xenorhabdus bacteria were detected and concurrent with this Enterococcus population declined to zero. This was probably due to secondary metabolites with antibacterial properties that were produced by Xenorhabdus. In the S. feltiae (both R and A21 strains) infections a third bacterium, Acinetobacter, appeared at about 130h (in S. feltiae A21 infections) or 100h (in S. feltiae R infections) and increased in population size to approximately that of Xenorhabdus. It was demonstrated that Enterococcus, orginating from the G. mellonella digestive tract, was sensitive to the organically soluble antimicrobials produced by Xenorhabdus but Acinetobacter, which was carried by the nematode, was not.  相似文献   

15.
Legionella pneumophila, the causative agent of a severe pneumonia named Legionnaires'' disease, is an important human pathogen that infects and replicates within alveolar macrophages. Its virulence depends on the Dot/Icm type IV secretion system (T4SS), which is essential to establish a replication permissive vacuole known as the Legionella containing vacuole (LCV). L. pneumophila infection can be modeled in mice however most mouse strains are not permissive, leading to the search for novel infection models. We have recently shown that the larvae of the wax moth Galleria mellonella are suitable for investigation of L. pneumophila infection. G. mellonella is increasingly used as an infection model for human pathogens and a good correlation exists between virulence of several bacterial species in the insect and in mammalian models. A key component of the larvae''s immune defenses are hemocytes, professional phagocytes, which take up and destroy invaders. L. pneumophila is able to infect, form a LCV and replicate within these cells. Here we demonstrate protocols for analyzing L. pneumophila virulence in the G. mellonella model, including how to grow infectious L. pneumophila, pretreat the larvae with inhibitors, infect the larvae and how to extract infected cells for quantification and immunofluorescence microscopy. We also describe how to quantify bacterial replication and fitness in competition assays. These approaches allow for the rapid screening of mutants to determine factors important in L. pneumophila virulence, describing a new tool to aid our understanding of this complex pathogen.  相似文献   

16.
The study of bacterial virulence often requires a suitable animal model. Mammalian models of infection are costly and may raise ethical issues. The use of insects as infection models provides a valuable alternative. Compared to other non-vertebrate model hosts such as nematodes, insects have a relatively advanced system of antimicrobial defenses and are thus more likely to produce information relevant to the mammalian infection process. Like mammals, insects possess a complex innate immune system1. Cells in the hemolymph are capable of phagocytosing or encapsulating microbial invaders, and humoral responses include the inducible production of lysozyme and small antibacterial peptides2,3. In addition, analogies are found between the epithelial cells of insect larval midguts and intestinal cells of mammalian digestive systems. Finally, several basic components essential for the bacterial infection process such as cell adhesion, resistance to antimicrobial peptides, tissue degradation and adaptation to oxidative stress are likely to be important in both insects and mammals1. Thus, insects are polyvalent tools for the identification and characterization of microbial virulence factors involved in mammalian infections.Larvae of the greater wax moth Galleria mellonella have been shown to provide a useful insight into the pathogenesis of a wide range of microbial infections including mammalian fungal (Fusarium oxysporum, Aspergillus fumigatus, Candida albicans) and bacterial pathogens, such as Staphylococcus aureus, Proteus vulgaris, Serratia marcescens Pseudomonas aeruginosa, Listeria monocytogenes or Enterococcus faecalis4-7. Regardless of the bacterial species, results obtained with Galleria larvae infected by direct injection through the cuticle consistently correlate with those of similar mammalian studies: bacterial strains that are attenuated in mammalian models demonstrate lower virulence in Galleria, and strains causing severe human infections are also highly virulent in the Galleria model8-11. Oral infection of Galleria is much less used and additional compounds, like specific toxins, are needed to reach mortality.G. mellonella larvae present several technical advantages: they are relatively large (last instar larvae before pupation are about 2 cm long and weight 250 mg), thus enabling the injection of defined doses of bacteria; they can be reared at various temperatures (20 °C to 30 °C) and infection studies can be conducted between 15 °C to above 37 °C12,13, allowing experiments that mimic a mammalian environment. In addition, insect rearing is easy and relatively cheap. Infection of the larvae allows monitoring bacterial virulence by several means, including calculation of LD5014, measurement of bacterial survival15,16 and examination of the infection process17. Here, we describe the rearing of the insects, covering all life stages of G. mellonella. We provide a detailed protocol of infection by two routes of inoculation: oral and intra haemocoelic. The bacterial model used in this protocol is Bacillus cereus, a Gram positive pathogen implicated in gastrointestinal as well as in other severe local or systemic opportunistic infections18,19.  相似文献   

17.
Methanolic extracts from heads of the wax moth, Galleria mellonella L. contain several factors that stimulate oviposition of virgin females in vivo and spontaneous contractions of the oviduct in vitro of the cricket, Gryllus bimaculatus. The myotropic and egglaying activities behaved distinctly during all steps of purification, including fractionation on reverse-phase high-performance liquid chromatography. A novel neuropeptide was isolated from Galleria mellonella. The peptide does not increase the motility of isolated cricket oviducts. Among 13 other myotropic or non-myotropic factors studied, none were found to be as potent as the new peptide in stimulating egg-laying activity. The dose-response curves of myotropic and non-myotropic factors indicate that (i) proctolin, l-glutamate, octopamine, leucokinin-VI, leucopyrokinin, ecdysone and 20-hydroxy-ecdysone, or equivalent structures, might be involved in Galleria mellonella oviposition control, and (ii) that only the novel wax moth neuropeptide has the ability to trigger egg laying in that insect. The significance of these findings is discussed.Abbreviations AcN acetonitrile - E head equivalent - 20-HE 20-hydroxyccdysone - JH 20-hydroxyecdysone, juvenile hormone - Lem-K VI leucokinin-VI - Lem-K I leucokinin-I - Lem MS leucomyosupressin - Lem PK leukopyrokinin - TFA trifluoroacetic acid  相似文献   

18.
Larvae of the greater waxmoth (Galleria mellonella) become paralysed by the venom of the braconid wasp (Habrobracon hebetor) a few minutes after intoxication. The profound neuromuscular paralysis, which may last for several weeks, includes all somatic muscles that are innervated through neuromuscular transmission. The peristaltic contractions of the heart and intestine, which are regulated by the depolarisation potentials of the myocardium or intestinal epithelial muscles, remain unaffected and fully functional. Heartbeat patterns and intestinal pulsations were monitored in the motionless, paralysed larvae by means of advanced electrocardiographic recording methods (contact thermography, pulse-light optocardiography). The records revealed more or less constant cardiac pulsations characterised by 20-25 systolic contractions per minute. The contractions were peristaltically propagated in the forward (anterograde) direction, with a more or less constant speed of 10 mm per second (23-25 °C). Additional electrocardiographic investigations on larvae immobilised by decapitation revealed the autonomic (brain independent) nature of heartbeat regulation. Sectioning performed in the middle of the heart (4th abdominal segment) seriously impaired the pacemaker rhythmicity and slowed down the rate of heartbeat in the anterior sections. By contrast, the functions of the posterior compartments of the disconnected heart remained unaffected. These results confirmed our previous conclusions about the existence of an autonomic, myogenic, pacemaker nodus in the terminal part of an insect heart. They show an analogy to the similar myogenic, sinoatrial or atrioventricular nodi regulating rhythmicity of the human heart. Peristaltic contractions of the intestine also represent a purely myogenic system, which is fully functional in larvae with complete neuromuscular paralysis. Unlike the constant anterograde direction of the heartbeat, intestinal peristaltic waves periodically reversed anterograde and retrograde directions. A possibility that the functional similarity between insect and human hearts may open new avenues in the field of comparative cardiology has been discussed.  相似文献   

19.
Metarhizium anisopliae conidia (spores) reduced weight gain and caused death when injected into Manduca sexta larvae. When the fungus was co-injected with the eicosanoid biosynthesis inhibitor dexamethasone, larval weight gain was further reduced and mortality increased. These effects were reversed when dexamethasone was given together with the eicosanoid precursor arachidonic acid (AA). Similarly, treatment with other eicosanoid biosynthesis inhibitors (esculetin, phenidone, ibuprofen, and indomethacin) with differing modes of action enhanced the reduction in weight gain caused by mycosis. Injection of M. anisopliae conidia induced nodule formation in vivo; nodule numbers were reduced by dexamethasone, and restored by AA. Incubation of hemocytes with conidia caused microaggregation of hemocytes (indicative of nodule formation) in vitro and this was inhibited by dexamethasone, suggesting that dexamethasone acts directly on hemocytes, although inhibition was only partially reversed by AA. We suggest that the M. sexta immune response to fungal pathogens is normally modulated by physiological systems that include eicosanoid biosynthesis. This is the first demonstration that the virulence of a fungal entomopathogen can be enhanced by compromising the insect host's immune system.  相似文献   

20.
Three different concentrations of the antibiotic tetracycline in honey were tested for their influence on the offspring production and longevity of the parasitoid wasp Encarsia formosa. Several earlier publications did not provide a conclusive answer on the effect that the Wolbachia have on these wasps. The results of our experiments show that at high tetracycline hydrochloride concentrations in honey (50mg/ml) the antibiotic is toxic to the females, all females died within three days after the antibiotic treatment. The concentration 5mg/ml was less toxic although the treated females also lived shorter and produced less offspring than the control females. At the lowest tested concentration of 1mg/ml there was no significant difference either in offspring production or in longevity between the control and the treated females. The antibiotic treatment at both 5 and 1mg/ml resulted in exclusively male progeny after the first two days of oviposition. These results are consistent with the theory that in species in which all individuals are infected the Wolbachia should not impose a large fitness cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号