首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J. Schönherr  K. Eckl  H. Gruler 《Planta》1979,147(1):21-26
The effect of temperature on water permeability of plant cuticles (astomatous Citrus leaf cuticles) has been investigated. The Arrhenius plot (logarithm of the permeability coefficient vs. 1/temperature) has two linear portions that intersect at 44° C. Evidence is presented to show that this intersection represents the solid/liquid phase transition of cuticular lipids. As the Arrhenius plot has only one phase transition in the temperature range of 5 to 80° C, it appears that all soluble cuticular lipids in the cuticle are present as a homogeneous mixture rather than as individual layers differing in composition. This view is supported by electron spin resonance evidence showing homogenous distribution of spin label fatty acids. The original distribution of soluble cuticular lipids is irreversibly altered by heating cuticular membranes above the transition temperature. This is accompanied by an irreversible increase in water peremeability, demonstrating the importance of the structure of cuticular lipids with regard to cuticular permeability.Abbreviations CM cuticular membranes - MX polymer matrix - SCL soluble cuticular lipids - MES morpholinoethane sulphonic acid - J flux - ESR electron spin resonance - THO tritiated water  相似文献   

2.
Water-Proofing Properties of Cuticular Lipids   总被引:5,自引:0,他引:5  
SYNOPSIS. Epicuticular lipids play a critical role in allowingarthropods to thrive in terrestrial environments, by reducingtranspiration of water through the cuticle. These lipids consistof a diverse array of compounds, especiaUy long-chain hydrocarbons.Rates of water loss are correlated with hydrocarbon structuralfeatures, including chain length, unsaturation and methyl-branching.The water-proofing abilities of cuticular lipids appear to dependlargely on their physical properties. In most arthropods, ratesof water loss increase rapidly above a "transition" temperature.A widely accepted model proposes that this transition is dueto melting of the surface lipids to a fluid, permeable state.Evidence for this hypothesis has primarily been correlative,due to experimental limitations. Recent technical advances inlipid biophysics and water loss measurements have made it possibleto test the lipid melting model more directly. Experiments usingmodel cuticles, in vitro preparations and intact arthropodssupport the idea that the phase behavior of cuticular lipidsis a major factor determining cuticular permeability.  相似文献   

3.
The epicuticle in the rabbit tick, Haemaphysalis leporispalustris, appeared to be continuously changing, with deposition and removal of lipids during and after engorgement. These changes were accompanied by corresponding changes in critical temperature. The correlation between changes in critical temperature and composition of cuticular lipids (i.e. changes in the number, types, and relative concentration of lipid classes) suggested that changes in lipid composition could be responsible for changes in critical temperature.A hypothesis, alternative to those of Beament and Locke, is proposed to explain the phenomenon of critical temperature. At critical temperature, certain lipids probably change phase from crystal to liquid crystal, with hydrocarbon chains in a highly mobile condition. The hypothesis is not based on the presence of a water-proofing monolayer, and is supported by transition phenomena known in many lipids.  相似文献   

4.
The major constituents of the epi- and intracuticular lipids of primary leaves of 8 cultivars of barley ( Hordeum vulgare L.) have been studied together with cuticular transpiration rates. The total amount of analysed cuticular lipids ranged from 9.6 to 13.4 μg cm−2 and was dominated by the epicuticular fraction, which made up 73–84% of the total. There were variations in the percentages of the analysed lipid classes, alkanes, esters, aldehydes, β-diketones and alcohols, between epi- and intracuticular lipids among individual cultivars, but no clear tendency in these variations, except for the aldehydes, was found. The epicuticular lipids were richer in aldehydes than the intracuticular lipids. The cuticular transpiration rates were poorly correlated with the levels or composition of epi-, intra- or total cuticular lipids. The cuticular transpiration rates were considerably altered as a response to a water stress treatment, but these changes could not be correlated with any changes in amount or composition of the cuticular lipids. From these results it is concluded that some property other than amount or composition of cuticular lipids is the most important in regulation of water diffusion through the cuticle.  相似文献   

5.
Experiments were conducted to determine the effects of whitefly parasitoids on the cuticular lipid composition of the silverleaf whitefly, Bemisia argentifolii Bellows and Perring [=sweetpotato whitefly, Bemisia tabaci (Gennadius), Biotype B] nymphs. The cuticular lipids of B. argentifolii nymphs that had been attacked by parasitic wasps, either Eretmocerus mundus Mercet or Encarsia pergandiella Howard, were characterized by capillary gas chromatography and CGC-mass spectrometry and the results compared with the cuticular lipids of unparasitized nymphs. Previous studies with B. argentifolii nymphs had shown that wax esters were the major components of the cuticular lipids with lesser amounts of hydrocarbons, long-chain aldehydes, and long-chain alcohols. No appreciable changes in lipid composition were observed for the cuticular lipids of E. pergandiella-parasitized nymphs as compared to unparasitized controls. However, the cuticular lipids from nymphs parasitized by E. mundus contained measurable quantities of two additional components in their hydrocarbon fraction. Analyses and comparisons with an authentic standard indicated that the two hydrocarbons were the even-numbered chain length methyl-branched alkanes, 2-methyltriacontane and 2-methyldotriacontane. The occurrences and possible functions of 2-methylalkanes as cuticular lipid components of insects are discussed and specifically, in regard to host recognition, acceptance, and discrimination by parasitoids. Published 2000 Wiley-Liss, Inc.  相似文献   

6.
Abstract. Water permeability of cuticular membranes (CM) from the inner bulb scales of Allium cepa has been investigated. CM have a thickness ranging from 0.6 to 1.3 μm. They are composed of a thin (120–200 nm) lamellated cuticle proper and a thicker (300–900 nm) cuticular layer. Permeability coefficients for diffusion of water across these thin membranes are very low (4 × lO−10ms−10). There was no difference in permeability of CM from successive scales of the same onion. Extraction of soluble cuticular lipids (SCL) with chloroform increased permeability by a factor of 1350 to 2050. Preliminary data indicate that only 1 μg cm−10 of SCL are removed by this treatment, hydrocarbons being the main (75%) consistuent. Permeability coefficients of cuticular transpiration were little affected by relative humidity, showing that transport is limited by a hydrophobic barrier that lacks dipoles. However, following extraction, permeability of the membranes depended strongly on humidity due to the presence of polar functional groups in the polymer matrix. Soluble cuticular lipids undergo a phase transition around 47°C. Temperatures higher than that irreversibly increased water permeability.  相似文献   

7.
Summary Cuticle discs cut from the wings ofPeriplaneta and cuticular lipid extracts were analysed by differential scanning calorimetry. Two major endothermic events, one beginning at 7.1±0.3°C, and the other increasing with temperature above 24.7±0.7°C, were associated with extractable lipids in intact cuticle discs. Heating progressively destroyed the molecular structures responsible for the high temperature event but had no effect on the lower one. These results complement changes in cuticle permeability observed in a recent study and thought to be associated with structural change in the cuticular water barrier. The molecular structures responsible for both events depended on the presence of water in the cuticle. Cuticular lipid extracts lack the molecular organization found in intact cuticle, even when water is present.  相似文献   

8.
Cuticular phase transitions and molecular dynamics have been studied in the buthid scorpion Centruroides sculpturatus using the techniques of thermogravimetric analysis (TGA) and electron paramagnetic resonance (EPR). TGA studies of the cuticular permeability reveal discontinuous changes in thermal dependence of transcuticular water loss rates (transitions). The first transition occurs between 30–40 C and results in a small increase in water loss rate, whereas the second transition begins near 55 C and is accompanied by a large increase in water loss rate. EPR spectra of spin-labelled cuticle indicate that the epicuticular lipids are very mobile at ambient temperature, with the translational diffusion coefficient being about 5 × 10?6 cm2 sec at 22 C. and that the low-temperature transition is associated with an increase in mobility of the hydrocarbon chains of the epicuticular lipids. The high-temperature transition probably results from melting of the epicuticular lipids. The results of this study are discussed with reference to current models of the structure of the arthropod cuticle.  相似文献   

9.
Twenty cultivars of barley and 15 eceriferum mutants from one of the cultivars have been analysed for cuticular transpiration and epicuticular lipids of their primary leaves. The relative cuticular transpiration rates of the cultivars ranged from 0.61 to 1.98. In spite of this variation in transpiration most of the cultivars had almost the same amount of epicuticular lipids per leaf area, about 16 μg cm−2. The eceriferum mutants showed a wider range in amount of epicuticular lipids, from 5.0 to 15.5 μg cm−2. Nevertheless, most of the mutants transpired almost at the same rate. Only a weak correlation was found between cuticular transpiration and total amount of epicuticular lipids. None of the analysed lipid components (alkanes, aldehydes, primary alcohols, esters or fatty acids) was better correlated to the cuticular transpiration than the total amount of lipids. When the cultivars were exposed to a mild water stress their cuticular transpiration rates decreased by about 11%. This reduction was not accompanied by any corresponding increase in total amount of epicuticular lipids. The most pronounced effect of the water stress treatment was a stimulation in the ester formation and a reduced formation of primary alcohols. This shift in lipid composition could not be correlated to the decreased cuticular transpiration rates of the individual cultivars. From this investigation it is concluded that the cuticular transpiration is poorly correlated to the amount or composition of the epicuticular lipids in this barley material. As a consequence it was not possible to use any characteristic of the epicuticular lipids as a selection criterion in breeding for drought resistance.  相似文献   

10.
We consider the effect of cross-linking a small fraction of lipids, either saturated or unsaturated, in a mixture of saturated and unsaturated lipids and cholesterol. The change in phase behavior is examined utilizing a recent phenomenological model of the ternary system, which is extended to include a fourth component representing the cross-linked lipids. These lipids are taken to be identical to monomeric ones except for their reduced entropy of mixing. We find that even a relatively small amount of cross-linked lipids, less than 5 mol %, is sufficient to significantly expand the range of compositions within which there is coexistence between liquid-ordered and liquid-disordered phases. Equivalently, the cross-linking of lipids increases the liquid-liquid miscibility transition temperature, and therefore could bring about phase separation at a temperature at which, before cross-linking, there was only a single liquid phase.  相似文献   

11.
1. Lipids deposited on the surface or embedded within the cuticle of terrestrial plants and arthropods are primarily responsible for the observed low rates of water loss through the cuticle. 2. These lipids are a mixture of long-chain compounds which include hydrocarbons (saturated, unsaturated, branched), wax esters, free fatty acids, alcohols, ketones, aldehydes, and cyclic compounds. 3. The cuticle of both plants and arthropods is a continuous, non-cellular multilayered membrane which overlies the epidermal cells. 4. In arthropods, horizontal division of the cuticle into layers is clearly visible. In plants, the layers comprising the cuticle are not sharply demarcated. 5. The substance responsible for the structural integrity of the plant cuticle (cutin) is composed of cross-esterified fatty acids; structural integrity in arthropod cuticle is provided by a chitin-protein complex. 6. Cuticular lipids are probably formed near the surface in both plants and arthropods; however, specific sites of synthesis are known for only a few species and little is known about their transport from these sites to the surface. The elaborate pore canal and wax canal system of arthropod cuticle is absent from plants. 7. The physical structure and arrangement of the lipid deposits on the cuticular surface that are so important in controlling water movement depend on both quantity and chemical composition, and are, in turn, specific to each species in relation to its environment. 8. Different lipid components are not equally efficient in reducing transpiration. Maximum waterproofing effectiveness is provided by long-chain, saturated, non-polar molecules containing few methyl branches. 9. Plants and arthropods can, within genetic constraints, alter the composition of their cuticular waxes to improve impermeability when conditions require increased water conservation. 10. None of the models proposed to explain the change in arthropod cuticular permeability which occurs at a species-specific temperature (‘transition temperature’) in many species is supported by the experimental data now available.  相似文献   

12.
A new acoustical method for the investigation of lipid phase transition is introduced based on the measurement of the thermal acoustic radiation (TAR) inherent in lipids. The TAR of multilamellar vesicles from dipalmitoylphosphatidylcholine (DPPC) and dimyristoylphosphatidylcholine (DMPC) was measured in the megahertz range and the variations in the radiation intensity during the lipid phase transition were recorded. Two types of variations are possible: if the temperature of the vesicles decreases (in the process of transition from the liquid crystalline state to the gel state) then the TAR intensity increases, and if the temperature increases (in the reverse transition) then the TAR intensity decreases. These effects are connected with an increase in the ultrasonic absorption in the vesicles under lipid phase transition. Basing on the results of the TAR investigation, a new theoretical estimate has been developed of the variation in the absorption coefficient during the lipid phase transition. In this estimate, the variation is equated to the ratio of the phase transition entropy to the gas constant.  相似文献   

13.
Conservation of water is critical to the ecological success of Drosophila species living in the drier montane localities of the Western Himalayas. We observed clinal variation in desiccation resistance for both sexes of Drosophila kikkawai from an altitudinal transect (512–2226 m above sea level). Since more than 90 per cent of body water is lost through cuticular transpiration, the target of selection may be cuticular lipids or cuticular melanization. We tested whether melanic females and non-melanic males of D. kikkawai have similar mechanisms of desiccation resistance. There is clinal variation in the amount of cuticular lipids per fly in males, but not in females. By contrast, for females, elevational increase in melanization is positively correlated with desiccation resistance and negatively with cuticular water loss, but there is no variation in the amount of cuticular lipids. Thus, sexual dimorphism for the mechanism of desiccation resistance in D. kikkawai matches the water proofing role of body melanization as well as cuticular lipids.  相似文献   

14.
Two cultivars of oat ( Avena sativa L. cvs Pendek and Stormogul II) were exposed to short periods of water-deficit stress on five consecutive days. The plants responded to the stress by decreasing their cuticular transpiration rate. After two stress periods the cuticular transpiration rate was reduced by 30% for Pendek and by 47% for Stormogul II, and after another three stress periods by 30% and 20%, respectively. These reductions were correlated neither to changes in the total amount of what is generally called epicuticular lipids, nor to changes in any of the major individual constituents of the epicuticular lipids (alkanes, free and esterified fatty acids or free primary alcohols). After removal of the epicuticular lipids the long chain free primary alcohols of the leaves were extracted and determined. The amount of these presumably intracuticular alcohols increased after stress and changed to shorter chain length. From these results it is concluded that the intra- as well as the epicuticular lipids must be taken into consideration when discussing leaf surface lipids as protecting agents against water loss.  相似文献   

15.
Dietary hydrocarbons are incorporated into cuticular lipids of the grasshopper Melanoplus sanguinipes. Dietary secondary alcohols and ketones, however, are not incorporated into the cuticular lipids. In typical experiments from 8 to 28 per cent of the fed labeled n-alkanes are recovered in the cuticular lipids. Most of the radioactivity recovered from feeding the C23 n-alkane and a significant amount from the C25 was found as a secondary alcohol in the form of a wax ester. The C29 and C31 n-alkanes were recovered primarily unchanged as the n-alkane. Eighty-five per cent of injected acetate incorporated into the hydrocarbon fraction is in the branched hydrocarbons. These results show that the insect synthesizes its branched hydrocarbons, whereas a large part of the normal hydrocarbons can be dietary.  相似文献   

16.
The bilayer phase transitions from the ripple gel phase (P'(β)) to the liquid-crystal phase (L(α)) of a series of 1,2-diacylphosphatidylcholines containing a linear saturated acyl chain (C=14-19) have been studied by high-pressure scanning microcalorimetry. It has been shown that at ambient pressure, the transition temperature increases non-linearly depending on the acyl chain length. Pressure stabilizes the gel phase of lipids in a similar way; the pressure derivatives of the logarithm transition temperature as function of pressure are identical for all lipids. Based on the results obtained it has been concluded that the ratio γ of volume to enthalpy increments upon transitions in 1,2-diacylphosphatidylcholines is not dependent on the acyl chain length. When pressure grows, this ratio decreases drastically remaining identical for all lipids studied. Besides it has been demonstrated that increments of coefficients of thermal expansibility and isothermal compressibility are also rigidly bound to each other. Semi-empirical equations permitting to estimate volume parameters of the gel-to-liquid transition for 1,2-diacylphosphatidylcholines are given. The reasons for invariance of γ are discussed.  相似文献   

17.
The role of melanization and cuticular lipids in water conservation has been studied in many Drosophila species (Diptera: Drosophilidae). Nevertheless, a comparative approach to larval and adult stages of ecologically diverse, wild Drosophila species is still required. Based upon abdominal cuticular melanization patterns, wild‐caught Drosophila species were categorized as (1) melanic, (2) fixed‐melanic, or (3) non‐melanic. At the interspecific level, the ecological significance of melanization and cuticular lipids was determined by the inverse association of melanization and cuticular water loss in melanic species, and of cuticular lipids and cuticular water loss in fixed‐melanic and non‐melanic species. Interestingly, higher amounts of cuticular lipids were also evident in fixed as well as non‐melanic species, as compared to melanic species at larval stages, which is consistent with their differences in reduced water loss rates. Moreover, fixed‐melanic and non‐melanic species exhibited comparatively higher (ca. 1.8–2.0 fold) desiccation resistance. Thus, cuticular lipids provide a better waterproofing mechanism than melanization. Furthermore, acclimation to dehydration stress in adults improved desiccation resistance in melanic species, whereas such effects were lacking in fixed‐melanic and non‐melanic species. However, there were no changes in cuticular components as a consequence of desiccation acclimation. Thus, our results indicate that melanic, fixed‐melanic, and non‐melanic Drosophila species differ in the evolved physiological mechanisms of water conservation to adapt to dry conditions.  相似文献   

18.
Male crickets display sex-specific (e.g., mating and agonistic) behaviors towards conspecific individuals. One of the key signals for these behaviors is the chemical substance on the cricket body surface. In the present study, we analyzed female and male cuticular substances in behavioral assays. Antennal contact stimulation using female forewings elicited a mating behavior in males, while that using male forewings elicited an agonistic behavior in males. Thin-layer-chromatographic and other techniques analysis showed that saturated cuticular lipids were present in both female and male cuticles and that unsaturated lipids were present only in the male cuticle. Filter papers soaked with saturated or unsaturated cuticular lipids were applied to antennae of male crickets. Males showed mating behavior in response to stimulation with saturated lipids from both females and males but showed avoidance behavior in response to stimulation with male unsaturated lipids. Because cuticular lipids did not induce agonistic behavior in males, we collected odors from male crickets and found that these odors induced agonistic behavior in males. Therefore, we concluded that the key signals for mating, avoidance and agonistic behaviors of male crickets are comprised of at least three different components, saturated and unsaturated cuticular lipids and male odors, respectively.  相似文献   

19.
The Role of Lipid Physical Properties in Lipid Barriers   总被引:3,自引:0,他引:3  
SYNOPSIS.The hydrophobic nature of lipids means that they providegood bar-riers to the movement of charged and polar molecules.Barrier function appears to depend on the physical state ofthe lipids. Two well-investigated examples in-cludecell membranesand epicuticular lipids of arthropods. Ecologically relevantchanges in temperature significantly affect lipid properties,and both evolutionary and acclimatory differences in lipid compositionappear to preserve the physical properties of lipids under differentenvironmental conditions. These differences are generally believedto be beneficial to the organism, but rigorous examination oftheir adaptive significance is rare. Important issues are howlipid properties are regulated; which properties are physiologicallyrelevant, how are these properties sensed, and what biochemicaland molecular mechanisms regulate lipid properties? Progresshas recently been made in understanding how membrane lipid propertiesare regulated, but regulatory mechanisms for cuticular lipidsand other lipid sys-tems remain unknown.  相似文献   

20.
The effect of the electric field on the phase transition temperature (Tc) of acidic 1,2-dipalmitoyl-sn-glycero-3-phosphate (DPPA) and 1,2-dipalmitoyl-sn-glycero-3-thionphosphate (thion-DPPA) and zwitterion, i.e. 1,2-dipalmitoyl-rac-3-phosphocholine and 1,2-distearoyl-rac-glycero-3-phosphocholine (DPPC and DSPC), lipids has been investigated. The phase transition was detected using the jump-like increase effect in the conductance of the planar bilayer membrane. A voltage increase to 150 mV has been shown to increase the phase transition temperature in a bilayer lipid membrane (BLM) of phosphatidic acids (DPPA and thion-DPPA) by 8-12 degrees C while the transition temperature in the bilayer of zwitterion lipids (DPPC and DSPC) increases insignificantly. The increasing of Tt in BLM of acidic lipids is attributed to the voltage-induced changes in the molecule packing density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号