首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyphosphate (polyP) is a ubiquitous biopolymer whose function and metabolism are incompletely understood. The polyphosphate kinase (PPK) of Acinetobacter sp. strain ADP1, an organism that accumulates large amounts of polyP, was purified to homogeneity and characterized. This enzyme, which adds the terminal phosphate from ATP to a growing chain of polyP, is a 79-kDa monomer. PPK is sensitive to magnesium concentrations, and optimum activity occurs in the presence of 3 mM MgCl(2). The optimum pH was between pH 7 and 8, and significant reductions in activity occurred at lower pH values. The greatest activity occurred at 40 degrees C. The half-saturation ATP concentration for PPK was 1 mM, and the maximum PPK activity was 28 nmol of polyP monomers per microg of protein per min. PPK was the primary, although not the sole, enzyme responsible for the production of polyP in Acinetobacter sp. strain ADP1. Under low-phosphate (P(i)) conditions, despite strong induction of the ppk gene, there was a decline in net polyP synthesis activity and there were near-zero levels of polyP in Acinetobacter sp. strain ADP1. Once excess phosphate was added to the P(i)-starved culture, both the polyP synthesis activity and the levels of polyP rose sharply. Increases in polyP-degrading activity, which appeared to be mainly due to a polyphosphatase and not to PPK working in reverse, were detected in cultures grown under low-P(i) conditions. This activity declined when phosphate was added.  相似文献   

2.
In most natural environments, association with a surface in a structure known as biofilm is the prevailing microbial life-style of bacteria. Polyphosphate (polyP), an ubiquitous linear polymer of hundreds of orthophosphate residues, has a crucial role in stress responses, stationary-phase survival, and it was associated to bacterial biofilm formation and production of virulence factors. In previous work, we have shown that Escherichia coli cells grown in media containing a critical phosphate concentration >37 mM maintained an unusual high polyP level in stationary phase. The aim of the present work was to analyze if fluctuations in polyP levels in stationary phase affect biofilm formation capacity in E. coli. Polymer levels were modulated by the media phosphate concentration or using mutant strains in polyP metabolism. Cells grown in media containing phosphate concentrations higher than 25 mM were defective in biofilm formation. Besides, there was a disassembly of 24 h preformed biofilm by the addition of high phosphate concentration to the medium. These phenotypes were related to the maintenance or re-synthesis of polyP in stationary phase in static conditions. No biofilm formation was observed in ppkppx or ppkppx/ppk+ strains, deficient in polyP synthesis and hydrolysis, respectively. luxS and lsrK mutants, impaired in autoinducer-2 quorum sensing signal metabolism, were unable to form biofilm unless conditioned media from stationary phase wild type cells grown in low phosphate were used. We conclude that polyP degradation is required for biofilm formation in sufficient phosphate media, activating or triggering the production of autoinducer-2. According to our results, phosphate concentration of the culture media should be carefully considered in bacterial adhesion and virulence studies.  相似文献   

3.
Polyphosphate (polyP) is a ubiquitous biopolymer whose function and metabolism are incompletely understood. The polyphosphate kinase (PPK) of Acinetobacter sp. strain ADP1, an organism that accumulates large amounts of polyP, was purified to homogeneity and characterized. This enzyme, which adds the terminal phosphate from ATP to a growing chain of polyP, is a 79-kDa monomer. PPK is sensitive to magnesium concentrations, and optimum activity occurs in the presence of 3 mM MgCl2. The optimum pH was between pH 7 and 8, and significant reductions in activity occurred at lower pH values. The greatest activity occurred at 40°C. The half-saturation ATP concentration for PPK was 1 mM, and the maximum PPK activity was 28 nmol of polyP monomers per μg of protein per min. PPK was the primary, although not the sole, enzyme responsible for the production of polyP in Acinetobacter sp. strain ADP1. Under low-phosphate (Pi) conditions, despite strong induction of the ppk gene, there was a decline in net polyP synthesis activity and there were near-zero levels of polyP in Acinetobacter sp. strain ADP1. Once excess phosphate was added to the Pi-starved culture, both the polyP synthesis activity and the levels of polyP rose sharply. Increases in polyP-degrading activity, which appeared to be mainly due to a polyphosphatase and not to PPK working in reverse, were detected in cultures grown under low-Pi conditions. This activity declined when phosphate was added.  相似文献   

4.
Despite the crucial role of polyphosphate (polyP) in aquatic environments, its metabolism in cyanobacteria responding to nutrients is poorly understood. We investigate polyP in three cyanobacteria species, specifically unicellular picocyanobacteria, under various nutritional conditions. Our experiments show that the accumulation of polyP in cyanobacteria is strongly dynamic, depending on phosphate levels and growth stages. ‘Overplus’ uptake of phosphorus (P) during the lag phase leads to the rapid accumulation of polyP, followed by lower polyP quotas during the exponential growth stage as a result of competing ‘luxury’ P uptake and polyP utilization to support rapid cell division. Cyanobacteria are capable of P deficiency responses that preferentially maintain polyP. However, preferential utilization of polyP occurs under severe P stress, suggesting the crucial role of polyP as P reserve to support cellular survival. Strong variability was observed among different species of cyanobacteria in their ability to accumulate polyP, and likely in the threshold P levels at which preferential polyP degradation occurs. This suggests that some cyanobacteria may be more adaptive to P-stressed or P-fluctuating conditions. Our results explain and provide important insights into the variability of polyP observed in aquatic environments where picocyanobacteria are the dominant primary producers.  相似文献   

5.
Recent results revealed that inorganic polyphosphates (polyP), being energy-rich linear polymers of orthophosphate residues known from bacteria and yeast, also exist in higher eukaryotes. However, the enzymatic basis of their metabolism especially in mammalian cells is still uncertain. Here we demonstrate for the first time that alkaline phosphatase from calf intestine (CIAP) is able to cleave polyP molecules up to a chain length of about 800. The enzyme acts as an exopolyphosphatase degrading polyP in a processive manner. The pH optimum is in the alkaline range. Divalent cations are not required for catalytic activity but inhibit the degradation of polyP. The rate of hydrolysis of short-chain polyP by CIAP is comparable to that of the standard alkaline phosphatase (AP) substrate p-nitrophenyl phosphate. The specific activity of the enzyme decreases with increasing chain length of the polymer both in the alkaline and in the neutral pH range. The K(m) of the enzyme also decreases with increasing chain length. The mammalian tissue non-specific isoform of AP was not able to hydrolyze polyP under the conditions applied while the placental-type AP and the bacterial (Escherichia coli) AP displayed polyP-degrading activity.  相似文献   

6.
A major impediment to understanding the biological roles of inorganic polyphosphate (polyP) has been the lack of sensitive definitive methods to extract and quantitate cellular polyP. We show that polyP recovered in extracts from cells lysed with guanidinium isothiocynate can be bound to silicate glass and quantitatively measured by a two-enzyme assay: polyP is first converted to ATP by polyP kinase, and the ATP is hydrolyzed by luciferase to generate light. This nonradioactive method can detect picomolar amounts of phosphate residues in polyP per milligram of extracted protein. A simplified procedure for preparing polyP synthesized by polyP kinase is also described. Using the new assay, we found that bacteria subjected to nutritional or osmotic stress in a rich medium or to nitrogen exhaustion had large and dynamic accumulations of polyP. By contrast, carbon exhaustion, changes in pH, temperature upshifts, and oxidative stress had no effect on polyP levels. Analysis of Escherichia coli mutants revealed that polyP accumulation depends on several regulatory genes, glnD (NtrC), rpoS, relA, and phoB.  相似文献   

7.
Cells of a newly isolated environmental strain of Candida humicola accumulated 10-fold more polyphosphate (polyP), during active growth, when grown in complete glucose-mineral salts medium at pH 5.5 than when grown at pH 7.5. Neither phosphate starvation, nutrient limitation, nor anaerobiosis was required to induce polyP formation. An increase in intracellular polyP was accompanied by a 4.5-fold increase in phosphate uptake from the medium and sixfold-higher levels of cellular polyphosphate kinase activity. This novel accumulation of polyP by C. humicola G-1 in response to acid pH provides further evidence as to the importance of polyP in the physiological adaptation of microbial cells during growth and development and in their response to environmental stresses.  相似文献   

8.
Intracellular phosphate (P(i) ) is normally maintained at a fairly constant concentration in Escherichia coli, mainly by P(i) transport systems and by the 'phosphate balance' between P(i) and polyphosphate (polyP). We have reported previously that excess uptake of P(i) in a phoU mutant results in elevated levels of polyP. Here, we found that the elevated levels of polyP in the mutant could be reduced by the overproduction of YjbB, whose N-terminal half contains Na(+) /P(i) cotransporter domains. The rate of P(i) export increased when the YjbB overproducer grew on a medium containing glycerol-3-phosphate. These results strongly suggested that YjbB reduced the elevated levels of polyP in the phoU mutant by exporting intracellular excess P(i) .  相似文献   

9.
Cells of a newly isolated environmental strain of Candida humicola accumulated 10-fold more polyphosphate (polyP), during active growth, when grown in complete glucose-mineral salts medium at pH 5.5 than when grown at pH 7.5. Neither phosphate starvation, nutrient limitation, nor anaerobiosis was required to induce polyP formation. An increase in intracellular polyP was accompanied by a 4.5-fold increase in phosphate uptake from the medium and sixfold-higher levels of cellular polyphosphate kinase activity. This novel accumulation of polyP by C. humicola G-1 in response to acid pH provides further evidence as to the importance of polyP in the physiological adaptation of microbial cells during growth and development and in their response to environmental stresses.  相似文献   

10.
Inorganic polyphosphate (polyP) is a biopolymer of phosphoanhydride-linked orthophosphate residues. PolyP is involved in multiple cellular processes including mitochondrial metabolism and cell death. We used artificial membranes and isolated mitochondria to investigate the role of the polyP in mitochondrial ion transport and in activation of PTP. Here, we found that polyP can modify ion permeability of de-energised mitochondrial membranes but not artificial membranes. This permeability was selective for Ba2+ and Ca2+ but not for other monovalent and bivalent cations and can be blocked by inhibitors of the permeability transition pore – cyclosporine A or ADP. Lower concentrations of polyP modulate calcium dependent permeability transition pore opening. Increase in polyP concentrations and elongation chain length of the polymer causes calcium independent swelling in energized conditions. Physiologically relevant concentrations of inorganic polyP can regulate calcium dependent as well calcium independent mitochondrial permeability transition pore opening. This raises the possibility that cytoplasmic polyP can be an important contributor towards regulation of the cell death.  相似文献   

11.
Inorganic polyphosphate (polyP) plays a significant role in increasing bacterial cell resistance to unfavorable environmental conditions and in regulating different biochemical processes. Using transmission electron microscopy of the polychlorinated biphenyl (PCB)-degrading bacterium Pseudomonas sp. strain B4 grown in defined medium with biphenyl as the sole carbon source, we observed large and abundant electron-dense granules at all stages of growth and following a shift from glucose to biphenyl or chlorobiphenyls. Using energy dispersive X-ray analysis and electron energy loss spectroscopy with an integrated energy-filtered transmission electron microscope, we demonstrated that these granules were mainly composed of phosphate. Using sensitive enzymatic methods to quantify cellular polyP, we confirmed that this polymer accumulates in PCB-degrading bacteria when they grow in the presence of biphenyl and chlorobiphenyls. Concomitant increases in the levels of the general stress protein GroEl and reactive oxygen species were also observed in chlorobiphenyl-grown cells, indicating that these bacteria adjust their physiology with a stress response when they are confronted with compounds that serve as carbon and energy sources and at the same time are chemical stressors.  相似文献   

12.
Toxoplasma gondii tachyzoites were fractionated by modification of an iodixanol density gradient method previously used for acidocalcisome isolation from Trypanosoma cruzi epimastigotes. Fractions were characterized using electron microscopy, x-ray microanalysis, and enzymatic markers, and it was demonstrated that the heaviest (pellet) fraction contains electron-dense vacuoles rich in phosphorus, calcium, and magnesium, as found before for acidocalcisomes. Staining with 4',6-diamidino-2-phenylindole (DAPI) indicated that poly- phosphate (polyP) was preferentially localized in this fraction together with pyrophosphate (PP(i)). Using an enzyme-based method, millimolar levels (in terms of P(i) residues) of polyP chains of less than 50 residues long and micromolar levels in polyP chains of about 700-800 residues long were found to be preferentially localized in this fraction. The fraction also contained the pyrophosphatase and polyphosphatase activities characteristic of acidocalcisomes. Western blot analysis using antibodies against proteins from micronemes, dense granules, rhoptries, and plasma membrane showed that the acidocalcisomal fraction was not contaminated by these other organelles. T. gondii polyP levels rapidly decreased upon exposure of the parasites to a calcium ionophore (ionomycin), to an inhibitor of the V-H(+)-ATPase (bafilomycin A(1)), or to the alkalinizing agent NH(4)Cl. These changes were in parallel to an increase in intracellular Ca(2+) concentration, suggesting a close association between polyP hydrolysis and Ca(2+) release from the acidocalcisome. These results provide a useful method for the isolation and characterization of acidocalcisomes, showing that they are distinct from other previously recognized organelles present in T. gondii, and provide evidence for the role of polyP metabolism in response to cellular stress.  相似文献   

13.
Studies of polyphosphate (polyP) metabolism in microorganisms have been hampered by the lack of a convenient method for the assay in cell extracts of the activity of polyphosphate kinase (PPK), the enzyme principally responsible for microbial polyP biosynthesis. We report the development of such an assay, based on the well-established metachromatic reaction, with toluidine blue, of the polyP formed during the PPK-catalyzed reaction. The method was successfully used in the characterization of PPK activity in crude extracts of an environmental Burkholderia cepacia isolate. The development of a protocol for the physical recovery of polyP from solution is also reported.  相似文献   

14.
Many extremophilic microorganisms are polyextremophiles, being confronted with more than one stress condition. For instance, some thermoacidophilic microorganisms are in addition capable to resist very high metal concentrations. Most likely, they have developed special adaptations to thrive in their living environments. Inorganic polyphosphate (polyP) is a molecule considered to be primitive in its origin and ubiquitous in nature. It has many roles besides being a reservoir for inorganic phosphate and energy. Of special interest are those functions related to survival under stressing conditions in all kinds of cells. PolyP may therefore have a fundamental part in extremophilic microorganism's endurance. Evidence for a role of polyP in the continued existence under acidic conditions, high concentrations of toxic heavy metals and elevated salt concentrations are reviewed in the present work. Actual evidence suggests that polyP may provide mechanistic alternatives in tuning microbial fitness for the adaptation under stressful environmental situations and may be of crucial relevance amongst extremophiles. The enzymes involved in polyP metabolism show structure conservation amongst bacteria and archaea. However, the lack of a canonical polyP synthase in Crenarchaea, which greatly accumulate polyP, strongly suggests that in this phylum a different enzyme may be in charge of its synthesis.  相似文献   

15.
AIMS: Burkholderia cepacia complex (Bcc) isolates causing pulmonary infection in cystic fibrosis (CF) patients grow within an acidic environment in the lung. As exposure to acid pH has been shown to increase intracellular inorganic polyphosphate (polyP) formation in some bacteria, we investigated the inter-relationship between acidic pH and polyP accumulation in Bcc isolates. METHODS AND RESULTS: The formation of polyP by one Burkholderia cenocepacia clinical isolate was initially examined at a range of pH values by measuring total intracellular polyP accumulation and phosphate uptake. The pattern of polyP accumulation corresponded with the pattern of phosphate uptake with the maximum for both occurring at pH 5.5. Phosphate uptake and formation of polyP by this isolate was further determined over 48 h at pH 5.5, 6.5 and 7.5; formation of polyP was maximal at pH 5.5 at all time points studied. Sixteen of 17 additional clinical and environmental Bcc isolates examined also exhibited maximum phosphate uptake at pH 5.5. CONCLUSIONS: Both clinical and environmental Bcc isolates, of five genomovars, show enhanced formation of polyP in an acidic environment. Given both the speculated role of polyP in pathogenesis, cell signalling and biofilm formation and the acidic nature of the CF lung, this may be of considerable clinical importance. SIGNIFICANCE AND IMPACT OF THE STUDY: Growth of Bcc in an acidic environment, such as that found in the lungs of CF patients may be influenced in part by polyP accumulation.  相似文献   

16.
Inorganic polyphosphate (polyP) plays a significant role in increasing bacterial cell resistance to unfavorable environmental conditions and in regulating different biochemical processes. Using transmission electron microscopy of the polychlorinated biphenyl (PCB)-degrading bacterium Pseudomonas sp. strain B4 grown in defined medium with biphenyl as the sole carbon source, we observed large and abundant electron-dense granules at all stages of growth and following a shift from glucose to biphenyl or chlorobiphenyls. Using energy dispersive X-ray analysis and electron energy loss spectroscopy with an integrated energy-filtered transmission electron microscope, we demonstrated that these granules were mainly composed of phosphate. Using sensitive enzymatic methods to quantify cellular polyP, we confirmed that this polymer accumulates in PCB-degrading bacteria when they grow in the presence of biphenyl and chlorobiphenyls. Concomitant increases in the levels of the general stress protein GroEl and reactive oxygen species were also observed in chlorobiphenyl-grown cells, indicating that these bacteria adjust their physiology with a stress response when they are confronted with compounds that serve as carbon and energy sources and at the same time are chemical stressors.  相似文献   

17.
Phosphate is essential for all major life processes, especially energy metabolism and signal transduction. A linear phosphate polymer, polyphosphate (polyP), linked by high-energy phosphoanhydride bonds, can interact with various proteins, playing important roles as an energy source and regulatory factor. However, polyP-binding structures are largely unknown. Here we proposed a putative polyP binding site, a positively-charged semi-tunnel (PCST), identified by surface electrostatics analyses in polyP kinases (PPKs) and many other polyP-related proteins. We found that the PCSTs in varied proteins were folded in different secondary structure compositions. Molecular docking calculations revealed a significant value for binding affinity to polyP in PCST-containing proteins. Utilizing the PCST identified in the β subunit of PPK3, we predicted the potential polyP-binding domain of PPK3. The discovery of this feature facilitates future searches for polyP-binding proteins and discovery of the mechanisms for polyP-binding activities. This should greatly enhance the understanding of the many physiological functions of protein-bound polyP and the involvement of polyP and polyP-binding proteins in various human diseases.  相似文献   

18.
The content of inorganic linear polyphosphate (polyP) and the polymeric degree (n) of these compounds were determined in the process of growth of the yeast Saccharomyces cerevisiae VKM Y-1173 in a medium, which contained varying Pi amount with the constant level of all the necessary components. For this purpose, a combination of chemical methods of polyP extraction and 31P-NMR spectroscopy studies of their chain length were used. After 7 h of phosphate starvation, the yeast was shown to use almost completely the phosphate reserve in the form of polyP localized in various cell compartments to support their vitality. The polyP drop was followed by a considerable shortening of the polymer chain length of acid-soluble (polyP1) and two alkali-soluble (polyP3 and polyP4) fractions. Under the same conditions, the content of a salt-soluble fraction (polyP2) decreased almost 20-fold followed by a simultaneous increase of the chain length nearly 2-fold. As a result, fraction chain length ranged up to n = 40-45. Replacement of the yeast cells after phosphate starvation to a complete phosphate- and glucose-containing medium resulted in super-accumulation ("overcompensation") of polyP within 2 h mainly in polyP3 and, to a lesser degree, in polyP1, polyP2, and polyP5 fractions. In polyP4 fraction localized as polyP3 at the cell surface, the polyP super-accumulation was not detected. The increase of polyP amount in the fractions mentioned turned out not to be accompanied by simultaneous elongation of their chain length and occurred at the lowest level that is characteristic of a polymer level for each fraction. Further cultivation of the yeast on the complete medium during 2 h had little or no effect on polyP content in the cells but led to elongation of polyP chain length especially in the polyP3 and polyP4 fractions. A phenomenon of considerable elongation of polyP chain length against the background of their fixed content revealed in the yeast growing on the complete medium suggests that these organisms possess a previously unknown discrete way of polyP biosynthesis, which results first in the formation of comparatively low-molecular-mass chains followed by that of high-molecular-mass polymers.  相似文献   

19.
Cells of the yeast Saccharomyces cerevisiae with a low content of polyphosphates (polyP) are characterized by disturbance of growth in medium with 0.5% glucose. The parent strain with polyP level reduced by phosphate starvation had a longer lag phase. The growth rate of strains with genetically determined low content of polyP due to their enhanced hydrolysis (CRN/pMB1_PPN1 Sc is a superproducer of exopolyphosphatase PPN1) or reduced synthesis (the BY4741 vma2Δ mutant with impaired vacuolar membrane energization) was lower in the exponential phase. The growth of cells with high content of polyP was accompanied by polyP consumption. In cells of strains with low content of polyP, CRN/pMB1_PPN1 Sc and BY4741 vma2Δ, their consumption was insignificant. These findings provide more evidence indicating the use of polyP as an extra energy source for maintaining high growth rate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号