首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary In cultured bovine aortic endothelial cells, elementary K+ currents were studied in cell-attached and inside-out patches using the standard patch-clamp technique. Two different cationic channels were found, a large channel with a mean unitary conductance of 150±10 pS and a small channel with a mean unitary conductance of 12.5±1.1 pS. The 150-pS channel proved to be voltag- and Ca2+-activatable and seems to be a K+ channel. Its open probability increased on membrane depolarization and, at a given membrane potential, was greatly enhanced by elevating the Ca2+ concentration at the cytoplasmic side of the membrane from 10–7 to 10–4 m. 150-pS channels were not influenced by the patch configuration in that patch excision neither induced rundown nor evoked channel activity in silent cell-attached patches. However, they were only seen in two out of 55 patches. The 12-pS channel was predominant, a nonselective cationic channel with almost the same permeability for K+ and Na+ whose open probability was minimal near –60 mV but increased on membrane hyperpolarization. An increase in internal Ca2+ from 10–7 to 10–4 m left the open probability unchanged. Although the K+ selectivity of the 150-pS channels remains to be elucidated, it is concluded that they may be involved in controlling Ca2+-dependent cellular functions. Under physiological conditions, 12-pS nonselective channels may provide an inward cationic pathway for Na+.  相似文献   

2.
Summary K+ channels in cultured rat pancreatic islet cells have been studied using patch-clamp single-channel recording techniques in cell-attached and excised inside-out and outside-out membrane patches. Three different K+-selective channels have been found. Two inward rectifier K+ channels with slope conductances of about 4 and 17 pS recorded under quasi-physiological cation gradients (Na+ outside, K+ inside) and maximal conductances recorded in symmetrical K+-rich solutions of about 30 and 75 pS, respectively. A voltage- and calcium-activated K channel was recorded with a slope conductance of about 90 pS under the same conditions and a maximal conductance recorded in symmetrical K+-rich solutions of about 250 pS. Single-channel current recording in the cell-attached conformation revealed a continuous low level of activity in an apparently small number of both the inward rectifier K+ channels. But when membrane patches were excised from the intact cell a much larger number of inward rectifier K+ channels became transiently activated before showing an irreversible decline. In excised patches opening and closing of both the inward rectifier K+ channels were unaffected by voltage, internal Ca2+ or externally applied tetraethyl-ammonium (TEA) but the probability of opening of both inward rectifier K+ channels was reduced by internally applied 1–5mm adenosine-5-triphosphate (ATP). The large K+ channel was not operational in cell-attached membrane patches, but in excised patches it could be activated at negative membrane potentials by 10–7 to 10–6 m internal Ca2+ and blocked by 5–10mm external TEA.  相似文献   

3.
Sodium channels of human small-cell lung cancer (SCLC) cells were examined with whole-cell and single-channel patch clamp methods. In the tumor cells from SCLC cell line NCI-H146, the majority of the voltage-gated Na+ channels are only weakly tetrodotoxin (TTX)-sensitive (K d =215 mm). With the membrane potential maintained at –60 to –80 mV, these cells produced all-or-nothing action potentials in response to depolarizing current injection (>20 pA). Similar all-ornothing spikes were also observed with anodal break excitation. Removal of external Ca2+ did not affect the action potential production, whereas 5 m TTX or substitution of Na+ with choline abolished it. Action potentials elicited in the Ca2+-free condition were reversibly blocked by 4 mm MnCl2 due to the Mn2+-induced inhibition of voltage-dependent sodium currents (I Na). Therefore, Na+ channels, not Ca2+ channels, underlie the excitability of SCLC cells. Whole-cell I Na was maximal with step-depolarizing stimulations to 0 mV, and reversed at +45.2 mV, in accord with the predicted Nernst equilibrium potential for a Na+-selective channel. I Na evoked by depolarizing test potentials (–60 to +40 mV) exhibited a transient time course and activation/ inactivation kinetics typical of neuronal excitable membranes; the plot of the Hodgkin-Huxley parameters, m and h, also revealed biophysical similarity between SCLC and neuronal Na+ channels. The single channel current amplitude, as measured with the inside-out patch configuration, was 1.0 pA at –20 mV with a slope conductance of 12.1 pS. The autoantibodies implicated in the Lambert-Eaton myasthenic syndrome (LES), which are known to inhibit I Ca and I Na in bovine adrenal chromaffin cells, also significantly inhibited I Na in SCLC cells. These results indicate that (i) action potentials in human SCLC cells result from the regenerative increase in voltage-gated Na+ channel conductance; (ii) fundamental characteristics of SCLC Na+ channels are the same as the classical sodium channels found in a variety of excitable cells; and (iii) in some LES patients, SCLC Na+ channels are an additional target of the pathological IgG present in the patients' sera.Department of Biomedical EngineeringThis study was supported by National Institutes of Health grant NS18607 and a research grant from the Muscular Dystrophy Association. Dr. Y.I. Kim is the recipient of a Javits Neuroscience Investigator Award from the National Institute of Neurological Disorder and Stroke.  相似文献   

4.
Summary Cell-attached patch-clamp recordings from Ehrlich ascites tumor cells reveal nonselective cation channels which are activated by mechanical deformation of the membrane. These channels are seen when suction is applied to the patch pipette or after osmotic cell swelling. The channel activation does not occur instantaneously but within a time delay of 1/2 to 1 min. The channel is permeable to Ba2+ and hence presumably to Ca2+. It seems likely that the function of the nonselective, stretch-activated channels is correlated with their inferred Ca2+ permeability, as part of the volume-activated signal system. In isolated insideout patches a Ca2+-dependent, inwardly rectifying K+ channel is demonstrated. The single-channel conductance recorded with symmetrical 150 mm K+ solutions is for inward current estimated at 40 pS and for outward current at 15 pS. Activation of the K+ channel takes place after an increase in Ca2+ from 10–7 to 10–6 m which is in the physiological range. Patch-clamp studies in cellattached mode show K+ channels with spontaneous activity and with characteristics similar to those of the K+ channel seen in excised patches. The single-channel conductance for outward current at 5 mm external K+ is estimated at about 7 pS. A K+ channel with similar properties can be activated in the cellattached mode by addition of Ca2+ plus ionophore A23187. The channel is also activated by cell swelling, within 1 min following hypotonic exposure. No evidence was found of channel activation by membrane stretch (suction). The time-averaged number of open K+ channels during regulatory volume decrease (RVD) can be estimated at 40 per cell. The number of open K+ channels following addition of Ca2+ plus ionophore A23187 was estimated at 250 per cell. Concurrent activation in cell-attached patches of stretch-activated, nonselective cation channels and K+ channels in the presence of 3 mm Ca2+ in the pipette suggests a close spatial relationship between the two channels. In excised inside-out patches (with NMDG chloride on both sides) a small 5-pS chloride channel with low spontaneous activity is observed. The channel activity was not dependent on Ca2+ and could not be activated by membrane stretch (suction). In cell-attached mode singlechannel currents with characteristics similar to the channels seen in isolated patches are seen. In contrast to the channels seen in isolated patches, the channels in the cell-attached mode could be activated by addition of Ca2+ plus ionophore A23187. The channel is also activated by hypotonic exposure with a single-channel conductance at 7 pS (or less) and with a time delay at about 1 min. The number of open channels during RVD is estimated at 80 per cell. Two other types of Cl channels were regularly recorded in excised inside-out patches: a voltage-activated 400-pS channel and a 34-pS Cl channel which show properties similar to the Cl channel in the apical membrane in human airway epithelial cells. There is no evidence for a role in RVD for either of these two channels.  相似文献   

5.
Ion channels in isolated patches of the plasma membrane of pea (Pisum sativum arg) epidermal cells were studied with the patch-clamp technique. One anion and one cation channel were dominantly present in most trials. The anion channel conducts nitrate, halides and malate, with a conductance in symmetrical 100 mm Cl of 300 pS and can be blocked by SITS when applied to the cytoplasmic side of the membrane. The cation channel poorly discriminates between potassium, sodium and lithium, is not blocked by either TEA or Ba2+, and has a conductance of 35 pS in symmetrical 100 mm K+. The open probability of the cation channel increases with increase of the Ca2+ concentration on the cytoplasmic side of the membrane from 0.1 to 1 m. The possible role of these two channels in the physiology of epidermal cells is discussed.This work was supported by NSF grant DCB-890 3744 to E.V.  相似文献   

6.
Patch clamp studies show that there may be as many as seven different channel types in the plasma membrane of protoplasts derived from young leaves of the halophytic angiosperm Zostera muelleri. In whole-cell preparations, both outward and inward rectifying currents that activate in a timeand voltage-dependent manner are observed as the membrane is either depolarized or hyperpolarized. Current voltage plots of the tail currents indicate that both currents are carried by K+. The channels responsible for the outward currents have a unit conductance of approximately 70 pS and are five times more permeable to K+ than to Na+. In outside-out patches we have identified a stretch-activated channel with a conductance of 100 pS and a channel that inwardly rectifies with a conductance of 6 pS. The reversal potentials of these channels indicate a significant permeability to K+. In addition, the plasma membrane contains a much larger K+ channel with a conductance of 300 pS. Single channel recordings also indicate the existence of two Cl channels, with conductances of 20 and 80 pS with distinct substates. The membrane potential difference of perfused protoplasts showed rapid action potentials of up to 50 mV from the resting level. The frequency of these action potentials increased as the external osmolarity was decreased. The action potentials disappeared with the addition of Gd3+, an effect that is reversible upon washout.We would like to thank K. Morris and D. McKenzie for technical assistance and the Australian Research Council for financial support.  相似文献   

7.
The outer sulcus epithelium was recently shown to absorb cations from the lumen of the gerbil cochlea. Patch clamp recordings of excised apical membrane were made to investigate ion channels that participate in this reabsorptive flux. Three types of channel were observed: (i) a nonselective cation (NSC) channel, (ii) a BK (large conductance, maxi K or K Ca ) channel and (iii) a small K+ channel which could not be fully characterized. The NSC channel found in excised insideout patch recordings displayed a linear current-voltage (I-V) relationship (27 pS) and was equally conductive for Na+ and K+, but not permeable to Cl or N-methyl-d-glucamine. Channel activity required the presence of Ca2+ at the cytosolic face, but was detected at Ca2+ concentrations as low as 10−7 m (open probability (P o ) = 0.11 ± 0.03, n= 8). Gadolinium decreased P o of the NSC channel from both the external and cytosolic side (IC50∼ 0.6 μm). NSC currents were decreased by amiloride (10 μm− 1 mm) and flufenamic acid (0.1 mm). The BK channel was also frequently (38%) observed in excised patches. In symmetrical 150 mm KCl conditions, the I-V relationship was linear with a conductance of 268 pS. The Goldman-Hodgkin-Katz equation for current carried solely by K+ could be fitted to the I-V relationship in asymmetrical K+ and Na+ solutions. The channel was impermeable to Cl and N-methyl-d-glucamine. P o of the BK channel increased with depolarization of the membrane potential and with increasing cytosolic Ca2+. TEA (20 mm), charybdotoxin (100 nm) and Ba2+ (1 mm) but not amiloride (1 mm) reduced P o from the extracellular side. In contrast, external flufenamic acid (100 μm) increased P o and this effect was inhibited by charybdotoxin (100 nm). Flufenamic acid inhibited the inward short-circuit current measured by the vibrating probe and caused a transient outward current. We conclude that the NSC channel is Ca2+ activated, voltage-insensitive and involved in both constitutive K+ and Na+ reabsorption from endolymph while the BK channel might participate in the K+ pathway under stimulated conditions that produce an elevated intracellular Ca2+ or depolarized membrane potential. Received: 14 October 1999/Revised: 10 December 1999  相似文献   

8.
Summary Patch-clamp methods were used to study single-channel events in isolated oxyntic cells and gastric glands fromNecturus maculosa. Cell-attached, excised inside-out and outside-out patches from the basolateral membrane frequently contained channels which had conductances of 67±21 pS in 24% of the patches and channels of smaller conductance, 33±6 pS in 56% of the patches. Channels in both classes were highly selective for K+ over Na+ and Cl, and shared linear current-voltage relations. The 67-pS channel was activated by membrane depolarization, whereas the activity of the 33-pS channel was relatively voltage independent. The larger conductance channels were activated by intracellular Ca2+ in the range between 5 and 500nm, but unaffected by cAMP. The smaller conductance channels were activated by cAMP, but not Ca2+. The presence of K+ channels in the basolateral membrane which are regulated by these known second messengers can account for the increase in conductance and the hyperpolarization of the membrane observed upon secretagogue stimulation.  相似文献   

9.
We recently reported that M-1 mouse cortical collecting duct cells show nonselective cation (NSC) channel activity (Proc. Natl. Acad. Sci. USA 89:10262–10266, 1992). In this study, we further characterize the M-1 NSC channel using single-channel current recordings in excised inside-out patches. The M-1 NSC channel does not discriminate between Na+, K+, Rb+, Cs+, and Li+. It has a linear I-V relation with a conductance of 22.7±0.5 pS (n=78) at room temperature. The Pcation/ Panion ratio is about 60 and there is no measurable conductance for NMDG, Ca2+, Ba2+, and Mn2+. Cytoplasmic calcium activates the M-1 NSC channel at a threshold of 10–6 m and depolarization increases channel activity (NP o ). Cytoplasmic application of adenine nucleotides inhibits the M-1 NSC channel. At doses of 10–4 m and 10–3 m, ATP reduces NP o by 23% and 69%, respectively.Furthermore, since ADP (10–3 m) reduces NP o by 93%, the inhibitory effect of adenine nucleotides is not dependent on the presence of a -phosphoryl group and therefore does not involve protein phosphorylation. The channel is not significantly affected by 8-Br-cGMP (10–4 m) or by cGMP-dependent protein kinase (10–7 m) in the presence of 8-Br-cGMP (10–5 m) and ATP (10–4 m). The NSC channel is not sensitive to amiloride (10–4 m cytoplasmic and/or extracellular) but flufenamic acid (10–4 m) produces a voltage-dependent block, reducing NP o by 35% at depolarizing voltages and by 80% at hyperpolarizing voltages.We conclude that the NSC channel of M-1 mouse cortical collecting duct cells belongs to an emerging family of calcium-activated and nucleotide-sensitive nonselective cation channels. It does not contribute to amiloride-sensitive sodium absorption and is unlikely to be a major route for calcium entry. The channel is normally quiescent but may be activated under special physiological conditions, e.g., during volume regulation.The expert technical assistance of U. Fink and I. Doering-Hirsch is gratefully acknowledged. We thank A. Rabe and Dr. J. Disser for programming the computer software.This work was supported by a grant from the Deutsche Forschungsge-meinschaft (DFG grant Fr 233/9-1) and a grant from the National Institutes of Health (NIH grant DK-17433).  相似文献   

10.
Summary Ca2+- and Ba2+-permeable channel activity from adult rat ventricular myocytes, spontaneously appeared in the three single-channel recording configurations: cell-attached, and excised inside-out or outside-out membrane patches. Single-channel activity was recorded at steady-state applied membrane potentials including the entire range of physiologic values, and displayed no rundown in excised patches. This activity occurred in irregular bursts separated by quiescent periods of 5 to 20 min in cell-attached membrane patches, whereas in excised patch experiments, this period was reduced to 2 to 10 min. During activity, a variety of kinetic behaviors could be observed with more or less complex gating patterns. Three conductance levels: 22, 45 and 78 pS were routinely observed in the same excised membrane patch, sometimes combining to give a larger level. These channels were significantly permeable to divalent cations and showed little or no permeability to potassium or sodium ions. The inorganic blockers of voltage-gated Ca channels, cobalt (2mm), cadmium (0.5mm) or nickel (3mm), had no apparent effect on these spontaneous unitary currents carried by barium ions. Under 10–5 m bay K 8644 or nitrendipine, the activity was clearly increased in about half of the tested excised inside-out membrane patches. Both dihydropyridines enhanced openings of the larger conductance level, which was only very occasionally seen under control conditions. When the single-channel activity became sustained under 5×10–6 m Bay K 8644, it was possible to calculate the mean unitary current at different membrane potentials and show that the mean current value increased with membrane potential.  相似文献   

11.
Summary A large conductance multi-state channel was identified and characterized in single channel recordings from cell-attached and excised patches of the human colonic tumor cell line, T84. The channel activity was dependent on the presence of both permeable cations and anions. In Na+-free symmetrical Cl solutions or Cl-free symmetrical Na+ solutions the channel was inactive. Addition of 5mm NaCl (Nal or KCl) induced channel activity. The selectivity sequence obtained from the shift in reversal potential was I(1.9) > Cl(1) > Na+(0.5) > K+(0.3). SO 4 2– , SCN (thiocyanate) and NMDG+ were impermeant. Multiple subconductance states were identified at all voltages explored (±90 mV). The minimum conductance encountered in symmetrical 100mm NaCl was a 15 pS substate, the maximum, 210 pS. The channel appeared to be composed of multiples of the 15 pS subunits which were reversibly blocked by the loop diuretic bumetanide (5 m).The authors wish to thank Morris Priddy and Charley Roberson for excellent technical assistance and Linda Pai and Steve Valder for participation in the early experiments. This study was supported by UPSH R01-DK39617 to A. Beaudet. L.V. was supported by a one-year fellowship from the Cystic Fibrosis Foundation.  相似文献   

12.
Summary Whole-cell patch-clamp recordings were made from freshly isolated human platelets. The pipette contained a high concentration of divalent cations, which permitted easy disruption of cell-attached membrane patches by suction. Single-channel currents were measured when the pipette contained isotonic BaCl2 or MgCl2 saline; over 30 sec –5 min an increasing number of channels appeared until conductance steps through individual channels could no longer be distinguished. The current-voltage relationship was curvilinear; chord conductance at –35 mV was 25 pS increasing to 45 to 52 pS at +45 mV. Ion substitution experiments showed the current to be primarily carried by Cl.E rev was shifted 30 mV/10-fold change in external Cl (replaced by gluconate), was similar with BaCl2 or MgCl2 in the pipette and was not significantly shifted by replacing external Na+ with K+. Addition of 1mm BAPTA to the MgCl2 pipette saline prevented activation of Cl currents; with isotonic CaCl2 internal saline, current appeared immediately upon patch rupture, suggesting that the Cl channels are dependent on internal Ca2+, 5-nitro-2-(3-phenylpropylamino)-benzoate, reported to block a Cl conductance in studies of rat epithelial cells, caused a potent flickery block and may be a useful tool with which to investigate the physiological role of Cl currents in human platelets.  相似文献   

13.
Summary Microelectrode impalement of human macrophages evokes a transient hyperpolarizing response (HR) of the membrane potential. This HR was found to be dependent on the extracellular concentration of K+ but not on that of Na+ or Cl. It was not influenced by low temperature (12°C) or by 0.2mm ouabain, but was blocked by 0.2mm quinine or 0.2mm Mg2+-EGTA. These findings indicate that the HR in human macrophages is caused by the activation of a K+ (Ca2+) conductance. Two types of ionic channels were identified in intact cells by use of the patch-clamp technique in the cell-attached-patch configuration, low and high-conductance voltage-dependent K+ channels. The low-conductance channels had a mean conductance of 38 pS with Na+-saline and 32 pS with K+-saline in the pipette. The high-coductance channels had a conductance of 101 and 114 pS with Na+- and K+-saline in the pipette, respectively. Cell-attached patch measurements made during evocation of an HR by microelectrode penetration showed enhanced channel activity associated with the development of the HR. These channels were also high-conductance channels (171 pS with Na+- and 165 pS K+-saline in the pipette) and were voltage dependent. They were, however, active at less positive potentials than the high-conductance K+ channels seen prior to the microelectrode-evoked HR. It is concluded that the high-conductance voltage-dependent ionic channels active during the HR in human macrophages contribute to the development of the HR.  相似文献   

14.
The measurements of unitary outward ion currents in unidentified neurons of the snailHelix pomatia with the patch-clamp technique in a cell-attached configuration showed the presence of several types of K+ channels. We investigated three types of K+ channels: with big (75 pS, BKC), medium (22 pS, MKC), and small (6.2 pS, SKC) unitary conductance. BKC and MKC were activated at a membrane potential of about –30 mV, whereas SKC were activated at more negative potentials, with opening probability of the latter channels significantly decreasing at potentials more positive than –30 mV. Pharmacological investigation showed that BKC and MKC channel activity disappeared after 8–10 min of cell patching with a pipette solution containing 60 mM Cs+, whereas MKC channels remained unaffected. BKC and MKC were proved to be more sensitive to TEA (20 mM), whereas SKC were selectively sensitive to 4-AP (10 mM). Cd2+ (100 µM) in the pipette solution decreased the unitary conductance of BKC channels by 55 % and that of MKC channels by about 31 %. In contrast, the unitary conductance of SKC channels was not changed by the above blocker. Bath application of 10 µM 5-HT showed that MKC were suppressed by 5-HT, whereas SKC and BKC were insensitive to this transmitter. It is supposed that BKC can be classified as big-conductance Ca2+-dependent K+ channels (KCa) or to 5-HT-sensitive K+ channels (S-type channels), while MKC correspond to intermediate-conductance KCa, and SKC channels comply well with the characteristics of A-type K+ current.Neirofiziologiya/Neurophysiology, Vol. 28, No. 6, pp. 250–259, November–December, 1996.  相似文献   

15.
Summary The properties of an anion-selective channel observed in basolateral membranes of microdissected, collagenase-treated, cortical thick ascending limbs of Henle's loop from mouse kidney were investigated using patch-clamp single-channel recording techniques. In basal conditions, single Cl currents were detected in 8% of cell-attached and excised, inside-out, membrane patches whereas they were observed in 24% of cell-attached and 67% of inside-out membrane patches when tubular fragments were preincubated with Forskolin (10–5 m) or 8-bromo-cAMP (10–4 m) and isobutylmethylxanthine (10–5 m). The channel exhibited a linear current-voltage relationship with conductances of about 40 pS in both cell-attached and cell-free membrane configurations. AP Na + P Cl ratio of 0.05 was estimated in the presence of a 142/42mm NaCl concentration gradient applied to inside-out membrane patches. Anionic selectivity of the channel followed the sequence Cl>Br>No 3 F; gluconate was not a permeant species. The open-state probability of the channel increased with membrane depolarization in cell-attached, i.e.,in situ membrane patches. In excised, inside-out, membrane patches, the channel was predominantly open with the open-state probability close to 0.8 over the whole range of potentials tested (–60 to +60 mV). The channel activity was not a function of internal calcium concentration between 10–9 and 10–3 m. We suggest that this Cl channel, whose properties are distinct from those in other epithelia, could account for the well-documented conductance which mediates Cl exit in the basolateral step of NaCl absorption in thick ascending limb of Henle's loop.  相似文献   

16.
Modulations of ion channel activity underlie rapid changes in membrane transport of cations in various nonexcitable cells. Previously, in smooth muscle cells, macrophages, lymphocytes, carcinoma and leukemia cell lines, non-voltage-gated sodium (NVGS) channels have been found. The activity of NVGS channels was shown to be critically dependent on the organization of actin cytoskeleton. The molecular identity of NVGS channels remains unclear. The present work is focused on molecular and functional identification of NVGS channels in human myeloid leukemia K562 cells. Degenerin/epithelial Na+ channels (DEG/ENaC) can be considered as possible molecular correlates. By using RT-PCR, expression of ??-, ??-, and ??-hENaC subunits in the K562 cells was detected. Various modes of the patch-clamp method were used to examine functional properties of sodium channels??specifically, to test the effect of amiloride on single channel and integral currents. The biophysical characteristics of the NVSG channels were close to those of ENaC; the channels have unitary conductance of 12 pS (145 mM Na+) and were impermeable to divalent cations (Ca2+ and Mg2+). We found that amiloride did not inhibit NVGS channels. Importantly, no amiloride-blockable sodium current was detected in the plasma membrane of K562 cells. Taken together, our observations suggest that amiloride-insensitive sodium channels in the K562 cells belong to the ENaC family.  相似文献   

17.
Cell swelling has been shown to increase the permeability of the plasma membrane to ions such as K+, Na+, Ca2+ or Cl in many types of cells. In cardiac cells, swelling has been reported to increase Cl conductance, but whether cation-selective currents are activated by swelling is not known. Low Cl or Cl-free solutions were used to study the presence of such currents. Lowering the osmolarity of the extracellular medium from 299 to 219 mOsm resulted in cell swelling and concurrent activation of a cation-selective whole-cell current. When cell-attached patches were formed on swollen cells, opening of bursting single channel currents were observed in 18% of the patches studied. Ion substitution experiments indicated that the channel discriminated poorly among monovalent cations, and was impermeable to Cl. The channel was permeable to Ca2+. In symmetrical 140 mM K+, the current-voltage relation was linear with a single channel conductance of 36 ± 3 pS. Depolarization increased channel open probability. Interestingly, depending on the membrane patch studied, application of negative pressure to the pipette caused either an increase or a decrease in the open probability of the channel already activated by swelling. Thus, the sensitivity to tension of the swelling-activated channel was different from those of previously reported stretch-activated channels. These findings suggest that nonselective cation channels exist in rat atrial cells and may be involved in swelling-induced changes in cell function.Dr. Kim is an Established Investigator of the American Heart Association.  相似文献   

18.
Summary Using the patch clamp technique we have identified a small conductance ion channel that typically occurs in clusters on the apical plasma membrane of pancreatic duct cells. The cell-attached current/voltage (I/V) relationship was linear and gave a single channel conductance of about 4 pS. Since the reversal potential was close to the resting membrane potential of the cell, and unaffected by changing from Na+-rich to K+-rich pipette solutions, the channel selects for anions over cations in cell-attached patches. The open state probability was not voltagedependent. Adding 25mm-bicarbonate to the bath solution caused a slight outward rectification of theI/V relationship, but otherwise, the characteristics of the channel were unaffected. In excised, inside-out, patches theI/V relationship was linear and gave a single channel conductance of about 4 pS. A threefold chloride concentration gradient across the patch (sulphate replacement) shifted the single channel current reversal potential by –26 mV, indicating that the channel is chloride selective. Stimulation of duct cells with secretin (10nm), dibutyryl cyclic AMP (1mm) and forskolin (1 m) increased channel open state probability and also increased the number of channels, and/or caused disaggregation of channel clusters, in the apical plasma membrane. Coupling of this channel to a chloride/bicarbonate exchanger would provide a mechanism for electrogenic bicarbonate secretion by pancreatic duct cells.  相似文献   

19.
Summary Whole-cell sealed-on pipettes have been used to measure electrical properties of the plasmalemma surrounding protoplasts isolated from Black Mexican sweet corn shoot cells from suspension culture. In these protoplasts the membrane resting potential (V m ) was found to be –59±23 mV (n=23) in 1mm K o . The meanV m became more negative as [K] o decreased, but was more positive than the K+ equilibrium potential. There was no evidence of electrogenic pump activity. We describe four features of the current-voltage characteristic of the plasmalemma of these protoplasts which show voltagegated channel activity. Depolarization of the whole-cell membrane from the resting potential activates time- and voltage-dependent outward current through K+-selective channels. A local minimum in the outward current-voltage curve nearV m =150 mV suggests that these currents are mediated by two populations of K+-selective channels. The absence of this minimum in the presence of verapamil suggests that the activation of one channel population depends on the influx of Ca2+ into the cytoplasm. We identify unitary currents from two K+-selective channel populations (40 and 125 pS) which open when the membrane is depolarized; it is possible that these mediate the outward whole-cell current. Hyperpolarization of the membrane from the resting potential produces time- and voltage-dependent inward whole-cell current. Current activation is fast and follows an exponential time course. The current saturates and in some cases decreases at membrane potentials more negative than –175 mV. This current is conducted by poorly selective K+ channels, whereP Cl/P K=0.43±0.15. We describe a low conductance (20 pS) channel population of unknown selectivity which opens when the membrane is hyperpolarized. It is possible that these channels mediate inward whole-cell current. When the membrane is hyperpolarized to potentials more negative than –250 mV large, irregular inward current is activated. A third type of inward whole-cell current is briefly described. This activates slowly and with a U-shaped current-voltage curve over the range of membrane potentials –90<V m <0 mV.  相似文献   

20.
Paramecium Na+ channels, which were Ca2+-calmodulin activated, were studied in the inside-out mode of patch clamp. After excision of the membrane patch, they were active in the presence of 10–5 to 10–3 m Ca2+ in the bath. They became much less active in the presence of 10–6 m Ca2+, and their activity subsided completely at 10–8 m Ca2+. A Hill plot showed a dissociation constant of 6 m for Ca2+ binding. This dissociation constant shifted to a submicromolar range in the presence of 1 mm Mg2+. The channels also exhibited a mild voltage dependence. When exposed to 10–8 m Ca2+ for an extended period of 2–4 min, channels were further inactivated even after bath Ca2+ was restored to 10–4 m. Whereas neither high voltage (+100 mV) nor high Ca2+ (10–3 m) was effective in reactivation of the inactive channels, addition of Paramecium wild-type calmodulin together with high Ca2+ to the bath restored channel activity without a requirement of additional Mg2+ and metabolites such as ATP. The channels reactivated by calmodulin had the same ion conductance, ion selectivity and Ca2+ sensitivity as those prior to inactivation. These inactivation and reactivation of the channels could be repeated, indicating that the direct calmodulin effect on the Na+ channel was reversible. Thus, calmodulin is a physiological factor critically required for Na+ channel activation, and is the Ca2+ sensor of the Na+-channel gating machinery.We thank C. Kung for his kind support, and A. Boileau for critical reading. Supported by grants from National Institutes of Health GM 22714-20 and 36386-09.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号