首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Seven coral reef communities were defined on Shiraho fringing reef, Ishigaki Island, Japan. Net photosynthesis and calcification rates were measured by in situ incubations at 10 sites that included six of the defined communities, and which occupied most of the area on the reef flat and slope. Net photosynthesis on the reef flat was positive overall, but the reef flat acts as a source for atmospheric CO2, because the measured calcification/photosynthesis ratio of 2.5 is greater than the critical ratio of 1.67. Net photosynthesis on the reef slope was negative. Almost all excess organic production from the reef flat is expected to be effused to the outer reef and consumed by the communities there. Therefore, the total net organic production of the whole reef system is probably almost zero and the whole reef system also acts as a source for atmospheric CO2. Net calcification rates of the reef slope corals were much lower than those of the branching corals. The accumulation rate of the former was approximately 0.5 m kyr−1 and of the latter was ~0.7–5 m kyr−1. Consequently, reef slope corals could not grow fast enough to keep up with or catch up to rising sea levels during the Holocene. On the other hand, the branching corals grow fast enough to keep up with this rising sea level. Therefore, a transition between early Holocene and present-day reef communities is expected. Branching coral communities would have dominated while reef growth kept pace with sea level rise, and the reef was constructed with a branching coral framework. Then, the outside of this framework was covered and built up by reef slope corals and present-day reefs were constructed.  相似文献   

2.
Accurate measurement of coral reef community metabolism is a necessity for process monitoring and in situ experimentation on coral reef health. Traditional methodologies used for these measurements are effective but limited by location and scale constraints. We present field trial results for a new benthic chamber system called the Submersible Habitat for Analyzing Reef Quality (SHARQ). This large, portable incubation system enables in situ measurement and experimentation on community-scale metabolism. Rates of photosynthesis, respiration, and calcification were measured using the SHARQ for a variety of coral reef substrate types on the reef flat of South Molokai, Hawaii, and in Biscayne National Park, Florida. Values for daily gross production, 24-h respiration, and net calcification ranged from 0.26 to 6.45 g O2 m–2 day–1, 1.96 to 8.10 g O2 m–2 24 h–1, and 0.02 to 2.0 g CaCO3 m–2 day–1, respectively, for all substrate types. Field trials indicate that the SHARQ incubation chamber is an effective tool for in situ isolation of a water mass over a variety of benthic substrate types for process monitoring, experimentation, and other applications.  相似文献   

3.
Daily community rates of calcification, photosynthesis and respiration were measured on a coral reef located in the Northern Red Sea, Gulf of Eilat, Israel between March 2000 and March 2002. This reef is exposed to seasonally varying levels of inorganic nutrient loading due to mixing and stratification of the adjacent open sea water column. Net production measurements were positively and linearly correlated with open sea nutrient levels, and the community photosynthesis to respiration ratio varied between 0.9 and 1.7 accordingly. Community calcification varied between 30 ± 20 and 60 ± 20 mmol C m−2 day−1 during summer and winter, respectively. Under increased nutrient loading the relation between community calcification and aragonite saturation state is suppressed by 30% on average. Both of these findings demonstrate the deleterious effects of nutrient loading on coral reefs.  相似文献   

4.
The uptake kinetics of zinc (Zn), an essential nutrient for both photosynthesis and calcification, in the tissue of S. pistillata showed that the transport of Zn is composed of a linear component (diffusion) at high concentrations and an active carrier-mediated component at low concentrations. The carrier affinity (K m=28 pmol l−1) was very low, indicating a good adaptation of the corals to low levels of Zn in seawater. Zn accumulation in the skeleton was linear; its level was dependent on the length of the incubation as well as on the external concentration of dissolved Zn. There was also a light-stimulation of Zn uptake, suggesting that zooxanthellae, through photosynthesis, are involved in this process. An enrichment of the incubation medium with 10 nM Zn significantly increased the photosynthetic efficiency of S. pistillata. This result suggests that corals living in oligotrophic waters might be limited in essential metals, such as zinc.  相似文献   

5.
6.
Juvenile and adult reef fishes often undergo migration, ontogenic habitat shifts, and nocturnal foraging movements. The orientation cues used for these behaviours are largely unknown. In this study, the use of sound as an orientation cue guiding the nocturnal movements of adult and juvenile reef fishes at Lizard Island, Great Barrier Reef was examined. The first experiment compared the movements of fishes to small patch reefs where reef noise was broadcast, with those to silent reefs. No significant responses were found in the 79 adults that were collected, but the 166 juveniles collected showed an increased diversity each morning on the reefs with broadcast noise, and significantly greater numbers of juveniles from three taxa (Apogonidae, Gobiidae and Pinguipedidae) were collected from reefs with broadcast noise. The second experiment compared the movement of adult and juvenile fishes to reefs broadcasting high (>570 Hz), or low (<570 Hz) frequency reef noise, or to silent reefs. Of the 122 adults collected, the highest diversity was seen at the low frequency reefs; and adults from two families (Gobiidae and Blenniidae) preferred these reefs. A similar trend was observed in the 372 juveniles collected, with higher diversity at the reefs with low frequency noises. This preference was seen in the juvenile apogonids; however, juvenile gobiids were attracted to both high and low sound treatments equally, and juvenile stage Acanthuridae preferred the high frequency noises. This evidence that juvenile and adult reef fishes orientate with respect to the soundscape raises important issues for management, conservation and the protection of sound cues used in natural behaviour.  相似文献   

7.
Nocturnal near-reef zooplankton from the forereef of Discovery Bay, Jamaica, were sampled during winter and summer 1994 using a diver-operated plankton pump with an intake head positioned within centimeters of benthic zooplanktivores. The pump collected zooplankton not effectively sampled by conventional net tows or demersal traps. We found consistently greater densities of zooplankton than did earlier studies that used other sampling methods in similar locations. There was no significant difference between winter (3491±578 m–3) and summer (2853±293 m–3) zooplankton densities. Both oceanic- and reef-associated forms were found at temporal and spatial scales relevant to benthic suspension feeders. Copepods were always the most abundant group, averaging 89% of the total zooplankton, and most were not of demersal origin. The cyclopoids, Oithona spp., were the numerically dominant organisms, with an average density of 1684±260 m–3. Other zooplankton (e.g., shrimp larvae, crab larvae, polychaetes, chaetognaths, amphipods, and isopods) were highly variable and much less abundant. Near-reef zooplankton abundances were high throughout the night sampling period, not just after sunset and before sunrise as previously described. Mean biomass was 4.5 mg C m–3, with values ranging from 1.0 to 15.6 mg C m–3. This work has important implications for evaluating which zooplankton types are available to benthic suspension feeders, including corals.  相似文献   

8.
Debate on the control of population dynamics in reef fishes has centred on whether patterns in abundance are determined by the supply of planktonic recruits, or by post-recruitment processes. Recruitment limitation implies little or no regulation of the reef-associated population, and is supported by several experimental studies that failed to detect density dependence. Previous manipulations of population density have, however, focused on juveniles, and there have been no tests for density-dependent interactions among adult reef fishes. I tested for population regulation in Coryphopterus glaucofraenum, a small, short-lived goby that is common in the Caribbean. Adult density was manipulated on artificial reefs and adults were also monitored on reefs where they varied in density naturally. Survival of adult gobies showed a strong inverse relationship with their initial density across a realistic range of densities. Individually marked gobies, however, grew at similar rates across all densities, suggesting that density-dependent survival was not associated with depressed growth, and so may result from predation or parasitism rather than from food shortage. Like adult survival, the accumulation of new recruits on reefs was also much lower at high adult densities than at low densities. Suppression of recruitment by adults may occur because adults cause either reduced larval settlement or reduced early post-settlement survival. In summary, this study has documented a previously unrecorded regulatory mechanism for reef fish populations (density-dependent adult mortality) and provided a particularly strong example of a well-established mechanism (density-dependent recruitment). In combination, these two compensatory mechanisms have the potential to strongly regulate the abundance of this species, and rule out the control of abundance by the supply of recruits.  相似文献   

9.
Complex relationships exist between tropical reef ecology, carbonate (CaCO3) production and carbonate sinks. This paper investigated census-based techniques for determining the distribution and carbonate production of reef organisms on an emergent platform in central Torres Strait, Australia, and compared the contemporary budget with geological findings to infer shifts in reef productivity over the late Holocene. Results indicate that contemporary carbonate production varies by several orders of magnitude between and within the different reef-flat sub-environments depending on cover type and extent. Average estimated reef-flat production was 1.66 ± 1.78 kg m−2 year−1 (mean ± SD) although only 23% of the area was covered by carbonate producers. Collectively, these organisms produce 17,399 ± 18,618 t CaCO3 year−1, with production dominated by coral (73%) and subordinate contributions by encrusting coralline algae (18%) articulated coralline algae, molluscs, foraminifera and Halimeda (<4%). Comparisons between the production of these organisms across the different reef-flat zones, surface sediment composition and accumulation rates calculated from cores indicate that it is necessary to understand the spatial distribution, density and production of each major organism when considering the types and amounts of carbonate available for storage in the various reef carbonate sinks. These findings raise questions as to the reliability of using modal production rates in global models independent of ecosystem investigation, in particular, indicating that current models may overestimate reef productivity in emergent settings. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

10.
Reef building corals form close associations with unicellular microalgae, fungi, bacteria and archaea, some of which are symbiotic and which together form the coral holobiont. Associations with multicellular eukaryotes such as polychaete worms, bivalves and sponges are not generally considered to be symbiotic as the host responds to their presence by forming physical barriers with an active growth edge in the exoskeleton isolating the invader and, at a subcellular level, activating innate immune responses such as melanin deposition. This study describes a novel symbiosis between a newly described hydrozoan (Zanclea margaritae sp. nov.) and the reef building coral Acropora muricata (=A. formosa), with the hydrozoan hydrorhiza ramifying throughout the coral tissues with no evidence of isolation or activation of the immune systems of the host. The hydrorhiza lacks a perisarc, which is typical of symbiotic species of this and related genera, including species that associate with other cnidarians such as octocorals. The symbiosis was observed at all sites investigated from two distant locations on the Great Barrier Reef, Australia, and appears to be host species specific, being found only in A. muricata and in none of 30 other species investigated at these sites. Not all colonies of A. muricata host the hydrozoans and both the prevalence within the coral population (mean = 66%) and density of emergent hydrozoan hydranths on the surface of the coral (mean = 4.3 cm−2, but up to 52 cm−2) vary between sites. The form of the symbiosis in terms of the mutualism–parasitism continuum is not known, although the hydrozoan possesses large stenotele nematocysts, which may be important for defence from predators and protozoan pathogens. This finding expands the known A. muricata holobiont and the association must be taken into account in future when determining the corals’ abilities to defend against predators and withstand stress.  相似文献   

11.
 The dynamics of parasitic gnathiid isopod infestation on the fish Hemigymnus melapterus were examined at Heron Island, Great Barrier Reef, by measuring the abundance and feeding state of gnathiids on fish collected between dawn and sunset and by estimating the time required for gnathiids to become engorged on host fluids. A model was developed to estimate gnathiid abundance on fish for any given time of day and host size. Fish at dawn had 2.4 times as many gnathiids compared with fish at sunset, indicating that some gnathiids infest fish overnight. Most gnathiids had engorged guts (72–86%); the proportion of empty guts and engorged guts did not differ in three time periods of collection (<0800 h, 0800 to 1100 h, and >1100 h). In the laboratory, gnathiids fed quickly with 75% of gnathiids exposed to fish for 4 h having engorged guts. The short time required for gnathiids to become engorged and the presence of gnathiids with empty guts throughout the day suggests that gnathiids also infest fish during the day. Thus gnathiids eaten by cleaner fish during the day may be replaced by other gnathiids during the day or night suggesting that interactions between gnathiids and cleaner fish are highly dynamic. Accepted: 15 April 1999  相似文献   

12.
Calcification rates, normalized to skeletal mass, in the zooxanthellate Galaxea fascicularis and the azooxanthellate Dendrophyllia sp. were similar over the whole temperature range of 18–29 °C. Calcification was measured by Ca45 incorporation in corals that were naturally acclimated to the prevailing seawater temperature. In both species maximum calcification rate occurred at about 25 °C and calcification rates can be fitted to a Gaussian distribution with respect to temperature. The similarity in temperature dependence of the zooxanthellate and azooxanthellate coral suggests that temperature affects some fundamental process of calcification that is independent of light effects. It is shown that two different populations of Galaxea fascicularis have distinctly different ratios of tissue protein to skeletal mass per polyp. This indicates that tissue protein may not be suitable for normalizing calcification rates in individual coral polyps, both within and between species. Intra- and interspecific comparisons of calcification rates may be better made on the basis of skeletal mass when polyps are similar in size and shape.Communicated by Topic Editor C. Barnes  相似文献   

13.
A molecular model is proposed to explain vesicle formation. The model is based on a balance between elastic and ‘hydrophobic’ forces for various micelle and bilayer geometries in dilute aqueous solutions. It predicts bilayered disc-like transition structures and is in agreement with experimental data.  相似文献   

14.
A restoration genetics guide for coral reef conservation   总被引:4,自引:0,他引:4  
Baums IB 《Molecular ecology》2008,17(12):2796-2811
Worldwide degradation of coral reef communities has prompted a surge in restoration efforts. They proceed largely without considering genetic factors because traditionally, coral populations have been regarded as open over large areas with little potential for local adaptation. Since, biophysical and molecular studies indicated that most populations are closed over shorter time and smaller spatial scales. Thus, it is justified to re-examine the potential for site adaptation in corals. There is ample evidence for differentiated populations, inbreeding, asexual reproduction and the occurrence of ecotypes, factors that may facilitate local adaptation. Discovery of widespread local adaptation would influence coral restoration projects mainly with regard to the physical and evolutionary distance from the source wild and/or captive bred propagules may be moved without causing a loss of fitness in the restored population. Proposed causes for loss of fitness as a result of (plant) restoration efforts include founder effects, genetic swamping, inbreeding and/or outbreeding depression. Direct evidence for any of these processes is scarce in reef corals due to a lack of model species that allow for testing over multiple generations and the separation of the relative contributions of algal symbionts and their coral hosts to the overall performance of the coral colony. This gap in our knowledge may be closed by employing novel population genetic and genomics approaches. The use of molecular tools may aid managers in the selection of appropriate propagule sources, guide spatial arrangement of transplants, and help in assessing the success of coral restoration projects by tracking the performance of transplants, thereby generating important data for future coral reef conservation and restoration projects.  相似文献   

15.
 For effective mitigation of human impacts, quantitative models are required that facilitate a comprehensive analysis of the effects of human activity on reefs. Fuzzy logic procedures generate a complex dose-response surface that models the relationships among coral abundance and various inputs (e.g., physical damage, sedimentation, nutrient influx), within the context of the abiotic marine environment. This is linked to a nonlinear economic structure incorporating technical interventions (e.g., pollution treatment) and policy interventions (e.g., taxation) in eight economic sectors. Optimization provides insights into the most cost-effective means for protecting coral reefs under different reef quality targets. The research demonstrates that: (1) it is feasible to use fuzzy logic to model complex interactions in coral reef ecosystems; and, (2) conventional economic procedures for modeling cost-effectiveness can result in sub-optimal policy choices when applied to complex systems such as coral reefs. In Montego Bay, Jamaica, up to a 20% increase in coral abundance may be achievable through using appropriate policy measures having a present value cost of US$153 million over 25 years; a 10% increase is achievable at a cost of US$12 million. Accepted: 20 June 1999  相似文献   

16.
Total contribution of six recently discovered submerged coral reefs in northern Australia to Holocene neritic CaCO3 and CO2 is assessed to address a gap in global budgets. CaCO3 production for the reef framework and inter-reefal deposits is 0.26–0.28 Mt. Holocene CO2 production is 0.14–0.16 Mt. Coral and coralline algae are the dominant sources of Holocene CaCO3 although foraminifers and molluscs are the dominant constituents of inter-reefal deposits. The total amount of Holocene neritic CaCO3 produced by the six submerged coral reefs is several orders of magnitude smaller than that calculated using accepted CaCO3 production values because of very low production, a ‘give-up’ growth history, and presumed significant dissolution and exports. The contribution of submerged coral reefs to global Holocene neritic CaCO3 is estimated to be 0.26–0.62 Gt, which yields 0.15–0.37 Gt of CO2. This amount of CO2 is 0.02–0.05% of the 780 Gt added to the atmosphere since 18 kyr BP. Contributions from Australian submerged coral reefs are estimated to be 0.05 Gt CaCO3 and 0.03 Gt CO2 for an emergent reef area of 47.9 × 103 km2. Based on the growth history of the submerged coral reefs in the Gulf of Carpentaria, maximum global Holocene CaCO3 fluxes could have attained 0.3 Gt yr− 1 between 11 and 7 ka BP. This additional CaCO3 would have culminated in a maximum CaCO3 production from all (emergent and submerged) coral reefs of 1.2 Gt yr− 1 and neritic CaCO3 production of 2.75 Gt yr− 1. The dilemma remains that the global area and CaCO3 mass of submerged coral reefs are currently unknown. It is inevitable that many more submerged coral reefs will be found. Our findings imply that submerged coral reefs are a small but fundamental source of Holocene neritic CaCO3 and CO2.  相似文献   

17.
 For marine species with open populations, patterns of larval settlement can have important consequences for performance and abundance at later life-stages. In this study, I tested whether larvae of a reef-dwelling goby (Coryphopterus glaucofraenum) settled differentially to reefs occupied by varying numbers of adults. I monitored settlement daily to reefs on which the density of adult gobies varied naturally, or was manipulated experimentally. Rates of settlement were constant across a broad range of adult densities, suggesting that larvae do not choose settlement sites based on the number of adults in their immediate vicinity. Accepted: 30 October 1998  相似文献   

18.
Marginal reef habitats are regarded as regions where coral reefs and coral communities reflect the effects of steady-state or long-term average environmental limitations. We used classifications based on this concept with predicted time-variant conditions of future climate to develop a scenario for the evolution of future marginality. Model results based on a conservative scenario of atmospheric CO2 increase were used to examine changes in sea surface temperature and aragonite saturation state over the Pacific Ocean basin until 2069. Results of the projections indicated that essentially all reef locations are likely to become marginal with respect to aragonite saturation state. Significant areas, including some with the highest biodiversity, are expected to experience high-temperature regimes that may be marginal, and additional areas will enter the borderline high temperature range that have experienced significant ENSO-related bleaching in the recent past. The positive effects of warming in areas that are presently marginal in terms of low temperature were limited. Conditions of the late 21st century do not lie outside the ranges in which present-day marginal reef systems occur. Adaptive and acclimative capabilities of organisms and communities will be critical in determining the future of coral reef ecosystems.Electronic supplementary material is available for this article if you access the article at . A link in the frame on the left on that page takes you directly to the supplementary material.  相似文献   

19.
Summary This study uses short-term assays and long-term transplant experiments to document the potential importance of fish predation and herbivory to the distribution and abundance of reef-building corals in a Caribbean back-reef system. Experimental manipulations of fish access reveal that the zonal patterns of the two reef-building corals Porites astreoides and P. porites f. furcata, dominant on shallow back-reef habitats, are strongly associated with the feeding intensity of parrotfishes. Differential palatability of the two corals to parrotfishes, the proximity of protective cover for large grazers and the availability of small refugia to harbor a cryptic grazer fauna are suggested as major features contributing to the observed patterns. A model predicting the interactions of various algivore/corallivore guilds on the relative dominance of Porites and algal populations is presented.  相似文献   

20.
 A spectacular mound-like reef formation (126 m in circumference, 10 m high) dominated by highly arched and record-size colonies of the unattached mushroom coral Halomitra pileus, along with 17 other species of the family Fungiidae, occurs in 31 m of water on the sedimentary lagoon floor of the Great Astrolabe Reef, Fiji. Core samples show radiocarbon dates which indicate that the formation hypothetically began building ∼4500 y ago, with a calculated mean accretion rate of 2.2 mm ⋅ y-1. The majority of fossil and living material is contributed by H. pileus colonies between 40–70 cm mean diameter, with some individuals up to 1.5 m in diameter. The size, fungiid diversity, and geological history of the bioherm is unprecedented and represents the first example of a coral reef constructed almost entirely by Fungiidae. Accepted: 29 July 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号