首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A reproducible transformation system was developed for pea (Pisum sativum L.) using as explants sections from the embryonic axis of immature seeds. A construct containing two chimeric genes, nopaline synthase-phosphinothricin acetyl transferase (bar) and cauliflower mosaic virus 35S-neomycin phosphotransferase (nptII), was introduced into two pea cultivars using Agrobacterium tumefaciens-mediated transformation procedures. Regeneration was via organogenesis, and transformed plants were selected on medium containing 15 mg/L of phosphinothricin. Transgenic peas were raised in the glasshouse to produce flowers and viable seeds. The bar and nptII genes were expressed in both the primary transgenic pea plants and in the next generation progeny, in which they showed a typical 3:1 Mendelian inheritance pattern. Transformation of regenerated plants was confirmed by assays for neomycin phosphotransferase and phosphinothricin acetyl transferase activity and by northern blot analyses. Transformed plants were resistant to the herbicide Basta when sprayed at rates used in field practice.  相似文献   

2.
Bruchid larvae cause major losses of grain legume crops through-out the world. Some bruchid species, such as the cowpea weevil and the azuki bean weevil, are pests that damage stored seeds. Others, such as the pea weevil (Bruchus pisorum), attack the crop growing in the field. We transferred the cDNA encoding the [alpha]-amylase inhibitor ([alpha]-AI) found in the seeds of the common bean (Phaseolus vulgaris) into pea (Pisum sativum) using Agrobacterium-mediated transformation. Expression was driven by the promoter of phytohemagglutinin, another bean seed protein. The [alpha]-amylase inhibitor gene was stably expressed in the transgenic pea seeds at least to the T5 seed generation, and [alpha]-AI accumulated in the seeds up to 3% of soluble protein. This level is somewhat higher than that normally found in beans, which contain 1 to 2% [alpha]-AI. In the T5 seed generation the development of pea weevil larvae was blocked at an early stage. Seed damage was minimal and seed yield was not significantly reduced in the transgenic plants. These results confirm the feasibility of protecting other grain legumes such as lentils, mungbean, groundnuts, and chickpeas against a variety of bruchids using the same approach. Although [alpha]-AI also inhibits human [alpha]-amylase, cooked peas should not have a negative impact on human energy metabolism.  相似文献   

3.
Late embryogenesis abundant (LEA) proteins are members of a large group of hydrophilic proteins found primarily in plants. The barley hva1 gene encodes a group 3 LEA protein and is induced by ABA and water deficit conditions. We report here the over expression of hva1 in mulberry under a constitutive promoter via Agrobacterium-mediated transformation. Molecular analysis of the transgenic plants revealed the stable integration and expression of the transgene in the transformants. Transgenic plants were subjected to simulated salinity and drought stress conditions to study the role of hva1 in conferring tolerance. The transgenic plants showed better cellular membrane stability (CMS), photosynthetic yield, less photo-oxidative damage and better water use efficiency as compared to the non-transgenic plants under both salinity and drought stress. Under salinity stress, transgenic plants show many fold increase in proline concentration than the non-transgenic plants and under water deficit conditions proline is accumulated only in the non-transgenic plants. Results also indicate that the production of HVA1 proteins helps in better performance of transgenic mulberry by protecting membrane stability of plasma membrane as well as chloroplastic membranes from injury under abiotic stress. Interestingly, it was observed that hva1 conferred different degrees of tolerance to the transgenic plants towards various stress conditions. Amongst the lines analysed for stress tolerance transgenic line ST8 was relatively more salt tolerant, ST30, ST31 more drought tolerant, and lines ST11 and ST6 responded well under both salinity and drought stress conditions as compared to the non-transgenic plants. Thus hva1 appears to confer a broad spectrum of tolerance under abiotic stress in mulberry.  相似文献   

4.
5.
Proline accumulates in a variety of plant species in response to stresses such as drought, salinity and extreme temperatures. Although its role in plant osmotolerance remains controversial, proline is thought to contribute to osmotic adjustment, detoxification of reactive oxygen species and protection of membrane integrity. In the present study, we evaluated the effects of stress-inducible proline production on osmotic adjustment, chlorophyll fluorescence and oxidative stress protection in transgenic sugarcane transformed with a heterologous P5CS gene. In well-watered conditions, free proline, malondialdehyde (MDA) levels, Fv/Fm ratios and chlorophyll contents (Chls) in transgenic sugarcane were not statistically different from non-transformed control plants. After 9 days without irrigation, proline content in transgenic events was on the average 2.5-fold higher than in controls. However, no osmotic adjustment was observed in plants overproducing proline during the water-deficit period. The photochemical efficiency of PSII observed was higher (65%) in the transgenic events at the end of the water-deficit experiment. The effects of proline on lipid peroxidation as MDA levels and on the decline of Chl in paraquat-treated leaf discs along the drought period suggest that proline protected the plants against the oxidative stress caused by the water deficit. The overall capacity of transgenic plants to tolerate water-deficit stress could be assessed by the significantly higher biomass yields 12 days after withholding water. These results suggest that stress-inducible proline accumulation in transgenic sugarcane plants under water-deficit stress acts as a component of antioxidative defense system rather than as an osmotic adjustment mediator.  相似文献   

6.
This glasshouse study used an improved larval measurement procedure to evaluate the impact of transgenic pea, Pisum sativum L., seeds expressing a-amylase inhibitor (AI)-1 or -2 proteins on pea weevil, Bruchus pisorum L. Seeds of transgenic 'Laura' and 'Greenfeast' peas expressing alpha-(AI)-1 reduced pea weevil survival by 93-98%. Larval mortality occurred at an early instar. Conversely, in nontransgenic cultivars, approximately 98-99% of the pea weevils emerged as adults. By measuring the head capsule size, we determined that larvae died at the first to early third instar in alpha-(AI)-1 transgenic peas, indicating that this inhibitor is highly effective in controlling this insect. By contrast, transgenic Laura and 'Dundale' expressing alpha-(AI)-2 did not affect pea weevil survival, but they did delay larval development. After 77 d of development, the head capsule size indicated that the larvae were still at the third instar stage in transgenic alpha-(AI)-2 peas, whereas adult bruchids had developed in the nontransgenic peas.  相似文献   

7.
8.
We compared the efficiency of two Agrobacterium tumefaciens strains, AGL 1 and KYRT1, for producing transgenic pea plants. KYRT1 is a disarmed strain of Chry5 that has been shown to be highly tumourigenic on soybean. The efficacies of the strains were compared using cotyledon explants from three pea genotypes and two plasmids. The peas were sourced from field-grown plants over three Southern Hemisphere summer seasons. Overall, KYRT1 was found to be on average threefold more efficient than AGL 1 for producing transgenic plants. We suggest that KYRT1 is sensitive to cocultivation temperature as the expected increase in efficiency was not achieved at high laboratory temperatures.Communicated by P. Debergh  相似文献   

9.
以超表达甘薯橙色基因(IbOr)的转基因甘薯(TS)以及非转基因甘薯(NT)为实验材料,通过15%聚乙二醇6000(PEG-6000)模拟干旱条件,研究转基因与非转基因甘薯幼苗在水分胁迫不同时间的光合系统,膜脂过氧化及抗氧化防御系统中主要指标的变化情况,探讨转基因甘薯耐旱性的生理机制。结果显示:(1)随PEG-6000胁迫时间延长,甘薯叶片的叶绿素、类胡萝卜素含量及其叶片净光合速率、气孔导度、胞间CO2浓度、蒸腾速率都显著降低,但转基因株系降低幅度小于非转基因植株。(2)在正常供水和水分胁迫下,超表达IbOr基因甘薯叶片中O-·2、MDA含量均低于非转基因甘薯,即转基因甘薯具有较低的活性氧水平且脂膜受损伤较小。(3)PEG-6000胁迫24h后,甘薯叶片中SOD、POD酶活性均增加,48h达到最大值,且转基因甘薯中2种酶活性显著高于非转基因甘薯。研究表明,过表达IbOr基因可以有效减轻甘薯在水分胁迫条件下受损害的程度,且可能主要通过提高甘薯的抗氧化胁迫能力来完成。  相似文献   

10.
Transgenic pea (Pisum sativum L.) plants containing mutant ahas/als gene were obtained using Agrobacterium-mediated genetic transformation. Transformation has been carried out using cocultivation of pea explants with Agrobacterium tumefaciens strain lBA4404 carrying genetic vectors pCB004, pCB006 and pCB007 containing ahas/als and nptII genes. The presence of transferred genes in the genomes of transgenic plants has been confirmed by PCR analysis.  相似文献   

11.
A late embryogenesis abundant (LEA) protein gene, ME-leaN4, from rape (Brassica napus) was successfully introduced into lettuce (Lactuca sativa L.) using Agrobacterium tumefaciens-mediated transformation. Infection by Agrobacterium strain EHA101 containing the binary vector pIG121-LEA was applied. Six independent transgenic lettuce plants were generated as a result. Transgenic lettuce demonstrated enhanced growth ability as compared to non-transformed control plants under salt-stress and water-deficit stress conditions. After 10-day growth under 100 mM NaCl condition in the hydroponics, average plant length and fresh weight of transgenic lettuce were 2.8 cm and 2.5 g plant–1, while control plants were only 0.2 cm and 0.3 g plant–1, respectively. The increased tolerance was also reflected by delayed wilting of leaves caused by water-deficit stress. These results suggest that growth characteristics were improved in transgenic lettuce plants constitutively expressing the rape LEA gene in response to salt- and water-deficit stress. Byong-Jin Park, Zaochang Liu These two authors contributed equally to this work.  相似文献   

12.
对2个含有酸性转化酶(AcInv)反义基因的转基因马铃薯品系及对照品种进行低温贮藏(4℃)及室温还暖处理.随低温贮藏时间的延长,供试材料均表现出还原糖含量升高,总淀粉含量下降的趋势.低温处理40 d时,"Ac转Atlantic"和"Ac转甘农薯2号"的还原糖含量比未转基因品种低23%和18%.总淀粉含量分别比未处理前下降约1.0%和1.3%,支链淀粉含量分别下降约1.4%和1.7%,淀粉直/支比明显低于对照,分别为0.29和0.38.块茎的石蜡切片显示,转基因块茎中深蓝色淀粉颗粒明显少于未转基因对照.另外,对低温贮藏的块茎室温还暖后,2个转基因品系的还原糖含量仍低于对照品种.实验结果证明反义AcInv基因对低温贮藏下块茎还原糖和淀粉含量具有下向调节作用.  相似文献   

13.
用基因枪法介导OSISAP1基因遗传转化洋葱   总被引:1,自引:0,他引:1  
以洋葱栽培品种‘HG400B’的鳞茎盘胚性愈伤组织为受体,利用基因枪介导法将水稻锌指蛋白基因OSISAP1导入洋葱中。组织化学染色检测到GUS基因在胚性愈伤组织中的瞬间表达活性,PCR、Southern杂交和RT-PCR分析,证实OSISAP1基因已整合到洋葱基因组中并实现高水平表达,转化率约为10%。对获得的转基因植株进行NaC1和NaHCO_3胁迫处理,当总浓度为200 mmol/L、处理1周后,未转基因植株会黄化、枯萎、死亡,而转基因植株却有很强的抗性,能耐受400mmol/L浓度的胁迫,表明OSISAP1基因的导入提高了转基因植株的耐盐碱性。  相似文献   

14.
Transgene movement via pollen is an important component of gene flow from transgenic plants. Here, we present proof-of-concept studies that demonstrate the monitoring of short distant movement of pollen expressing a genetically encoded fluorescent tag in oilseed rape (Brassica napus L. cv. Westar). Transgenic oilseed rape plants were produced using Agrobacterium-mediated transformation method with the pBINDC1 construct containing a green fluorescent protein (GFP) variant, mGFP5-ER, under the control of the pollen-specific LAT59 promoter from tomato. Transgenic pollen was differentiated from non-transgenic pollen in vivo by a unique spectral signature, and was shown to be an effective tool to monitor pollen movement in the greenhouse and field. GFP-tagged pollen also served as a practical marker to determine the zygosity of plants. In a greenhouse pollen flow study, more pollen was captured at closer distances from the source plant plot with consistent wind generated by a fan. Under field conditions, GFP transgenic pollen grains were detected up to a distance of 15 m, the farthest distance from source plants assayed. GFP-tagged pollen was easily distinguishable from non-transgenic pollen using an epifluorescence microscope.  相似文献   

15.
A new modulated lamp system is described. This system has successfully provided an ultraviolet-B (UV-B) supplement in proportion to ambient UV-B. The modulated system was used to simulate the UV-B environment resulting from an annual mean reduction of 15% in the stratospheric ozone under UK field conditions, but taking account of seasonal variation in depletion. The effects of this enhanced level of UV-B on the growth, physiology and yield of four cultivars of pea were assessed. Enhanced UV-B resulted in small reductions in the number of stems and total stem length per plant (respectively 4.7 and 8.7%). There were also significant decreases in the dry weight of peas (10.1%), pods (10.3%) and stems (7.8%) per plant. UV-B treatment had no effect on the number of peas per pod or average pea weight, but did significantly reduce (12.1%) the number of pods per plant. This decrease in pod number was partly due to enhanced abscission of pods during the final month of plant growth. UV-B treatment had no significant effect on chlorophyll fluorescence characteristics or CO2assimilation rate per unit leaf area. These results are consistent with previous controlled environment experiments, and suggest that reduction in yield may be due to direct effects of UV-B on plant growth rather than a decrease in photosynthetic capacity per unit leaf area.  相似文献   

16.
The partitioning of dry matter to stems, leaves and pods ofgroundnut was examined as a function of mean air temperatureand water stress. Different levels of stress were imposed bygrowing plants on stored moisture at five different mean temperaturesbetween 19 °C and 31 °C and at four levels of saturationvapour pressure deficit. Stands of plants were grown in controlledenvironment glasshouses. The ratio of pod to shoot weight (PWR) was greatest at 22 °Cand decreased from 0.28 to 0.04 as temperature increased to31 °C. PWR was closely related to the number of pods longerthan 5.0 mm but negatively correlated with stem weight ratio.In general, water stress had a minor influence on PWR althoughpeg and pod production were stimulated in five of the nine treatments.Mild water stress promoted peg and pod production because reproductivegrowth was less affected than the growth of leaves and stems,the major sinks early in the reproductive phase. In one treatment,mild water stress increased PWR by a factor of 2.2 indicatingthat when adequate water is supplied to relieve a mild stress,PWR can be greatly increased. Key words: Temperature, Water deficit, Partitioning, Groundnut  相似文献   

17.
A very simple leaf assay is described that rapidly and reliably identifies transgenic plants expressing the hygromycin resistance gene, hph or the phosphinothricin resistance gene, bar. Leaf tips were cut from plants propagated either in the glasshouse or in tissue culture and the cut surface embedded in solid medium containing the appropriate selective agent. Non-transgenic barley or rice leaf tips had noticeable symptoms of either bleaching or necrosis after three days on the medium and were completely bleached or necrotic after one week. Transgenic leaf tips remained green and healthy over this period. This gave unambiguous discrimination between transgenic and non-transgenic plants. The leaf assay was also effective for dicot plants tested (tobacco and peas).  相似文献   

18.
The gram-negative soil bacteria Rhizobium spp. infect and establish a nitrogen-fixing symbiosis with legume crops which involves the mutual exchange of diffusable signal molecules. In this study, Rhizobium leguminosarum containing a nod-lacZ gene fusion was used to screen the most effective plant-to-bacteria signal molecules for pea and lentil and the induction conditions. Out of a number of signal compounds including apigenin, daidzein, genistein, hesperetin, kaempferol, luteolin, naringenin, and rutin, hesperetin and naringenin were found to be the most effective plant-to-bacteria signal molecules. The induction of nod genes was temperature-dependent, where nod gene induction was decreased with dropping incubation temperature. The combination of hesperetin at 7 microM and naringenin at 3 microM resulted in better induction of nod gene activities compared to either hesperetin or naringenin alone. Nodulation and plant dry matter accumulation of pea and lentil plants receiving preinduced R. leguminosarum were higher than those of plants receiving uninduced R. leguminosarum cells in controlled environment growth chamber conditions. Preinduced Rhizobium with hesperetin at a concentration of 10 microM increased nodule number on average by 60.5% and dry matter accumulation by 14% in field pea at 17 degrees C, while it was 32% and 9% at 24 degrees C, respectively. Similarly, averaged over two rhizobial strains, a 59% and 6% increase in nodule number and biomass production at 17 degrees C, and a 39% and 27% at 24 degrees C, were obtained from lentil inoculated with hesperetin-induced R. leguminosarum, respectively.  相似文献   

19.
Three oat ( Avena sativa L.) cultivars have been successfully transformed using an efficient and reproducible in vitro culture system for differentiation of multiple shoots from shoot apical meristems. The transformation was performed using microprojectile bombardment with two plasmids (pBY520 and pAct1-D) containing linked ( hva1-bar) and non-linked ( gus) genes. The hva1 and bar genes cointegrated with a frequency of 100% as expected, and 61.6% of the transgenic plants carried all three genes. Molecular and biochemical analyses in R0, R1 and R2 progenies confirmed stable integration and expression of all transgenes. Localization of the GUS protein in R0 and R1 plants revealed that high-expression of gus occurred in vascular tissues and in the pollen grains of mature flowers. The constitutive expression of HVA1 protein was observed at all developmental stages of transgenic plants, and was particularly stronger during the early seedling stages. R2 progeny of five independent transgenic lines was tested in vitro for tolerance to osmotic (salt and mannitol) stresses. As compared to non-transgenic control plants, transgenic plants maintained a higher growth and showed significantly ( P < 0.05) increased tolerance to stress conditions. Less than 10% of transgenic plants showed symptoms of wilting or death of leaves and, when these symptoms present were delayed in transgenic plants as compared to 80% of non-transgenic plants, either wilted or died. These symptoms confirmed the increased in vitro tolerance in hva1-expressing transgenic plants to non-transgenic plants, providing strong evidence that the HVA1 protein may play an important role in the protection of oats against salinity and possible water-deficiency stress conditions.  相似文献   

20.
Pathogenic fungi have always been a major problem in agriculture. One of the effective methods for controlling pathogen fungi to date is the introduction of resistance genes into the genome of crops. It is interesting to find out whether the induced resistance in crops will have a negative effect on non-target organisms such as root colonization with the AM fungi. The objective of the present research was to study the influence of producing antifungal molecules by four transgenic pea (Pisum sativum L.) lines expressing PGIP gene from raspberry, VST-stilbene synthase from vine, a hybrid of PGIP/VST and bacterial Chitinase gene (Chit30) from Streptomyces olivaceoviridis respectively on the colonization potential of Glomus intraradices. Four different experiments were done in greenhouse and climate chamber, colonization was observed in all replications. The following parameters were used for evaluation: frequency of mycorrhization, the intensity of mycorrhization, the average presence of arbuscules within the colonized areas and the presence of arbuscules in the whole root system which showed insignificant difference between transgenic and non-transgenic plants. The root/shoot ratio exhibited different values according to the experiment condition. Compared with negative non-transgenic control all transgenic lines showed the ability to establish symbiosis and the different growth parameters had insignificant effect due to mycorrhization. The results of the present study proved that the introduced pathogen resistance genes did not affect the mycorrhization allocations in pea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号