首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to get insight into the origin of apparent negative cooperativity observed for F(1)-ATPase, we compared ATPase activity and ATPMg binding of mutant subcomplexes of thermophilic F(1)-ATPase, alpha((W463F)3)beta((Y341W)3)gamma and alpha((K175A/T176A/W463F)3)beta((Y341W)3)gamma. For alpha((W463F)3)beta((Y341W)3)gamma, apparent K(m)'s of ATPase kinetics (4.0 and 233 microM) did not agree with apparent K(m)'s deduced from fluorescence quenching of the introduced tryptophan residue (on the order of nM, 0.016 and 13 microM). On the other hand, in case of alpha((K175A/T176A/W463F)3)beta((Y341W)3)gamma, which lacks noncatalytic nucleotide binding sites, the apparent K(m) of ATPase activity (10 microM) roughly agreed with the highest K(m) of fluorescence measurements (27 microM). The results indicate that in case of alpha((W463F)3)beta((Y341W)3)gamma, the activating effect of ATP binding to noncatalytic sites dominates overall ATPase kinetics and the highest apparent K(m) of ATPase activity does not represent the ATP binding to a catalytic site. In case of alpha((K175A/T176A/W463F)3)beta((Y341W)3)gamma, the K(m) of ATPase activity reflects the ATP binding to a catalytic site due to the lack of noncatalytic sites. The Eadie-Hofstee plot of ATPase reaction by alpha((K175A/T176A/W463F)3)beta((Y341W)3)gamma was rather linear compared with that of alpha((W463F)3)beta((Y341W)3)gamma, if not perfectly straight, indicating that the apparent negative cooperativity observed for wild-type F(1)-ATPase is due to the ATP binding to catalytic sites and noncatalytic sites. Thus, the frequently observed K(m)'s of 100-300 microM and 1-30 microM range for wild-type F(1)-ATPase correspond to ATP binding to a noncatalytic site and catalytic site, respectively.  相似文献   

2.
In the crystal structure of bovine mitochondrial F(1)-ATPase (MF(1)) (Abrahams, J. P., Leslie, A. G. W., Lutter, R., and Walker, J. E. (1994) Nature 370, 621-628), the side chain oxygen of betaThr(163) interacts directly with Mg(2+) coordinated to 5'-adenylyl beta, gamma-imidodiphosphate or ADP bound to catalytic sites of beta subunits present in closed conformations. In the unliganded beta subunit present in an open conformation, the hydroxyl of betaThr(163) is hydrogen-bonded to the carboxylate of betaGlu(199). Substitution of betaGlu(201) (equivalent to betaGlu(199) in MF(1)) in the alpha(3)beta(3)gamma subcomplex of the F(1)-ATPase from the thermophilic Bacillus PS3 with cysteine or valine increases the propensity to entrap inhibitory MgADP in a catalytic site during hydrolysis of 50 microM ATP. These substitutions lower K(m3) (the Michaelis constant for trisite ATP hydrolysis) relative to that of the wild type by 25- and 10-fold, respectively. Fluorescence quenching of alpha(3)(betaE201C/Y341W)(3)gamma and alpha(3)(betaY341W)(3)gamma mutant subcomplexes showed that MgATP and MgADP bind to the third catalytic site of the double mutant with 8.4- and 4.4-fold higher affinity, respectively, than to the single mutant. These comparisons support the hypothesis that the hydrogen bond observed between the side chains of betaThr(163) and betaGlu(199) in the unliganded catalytic site in the crystal structure of MF(1) stabilizes the open conformation of the catalytic site during ATP hydrolysis.  相似文献   

3.
The influence of the epsilon-subunit on the nucleotide binding affinities of the three catalytic sites of Escherichia coli F1-ATPase was investigated, using a genetically engineered Trp probe in the adenine-binding subdomain (beta-Trp-331). The interaction between epsilon and F1 was not affected by the mutation. Kd for binding of epsilon to betaY331W mutant F1 was approximately 1 nM, and epsilon inhibited ATPase activity by 90%. The only nucleotide binding affinities that showed significant differences in the epsilon-depleted and epsilon-replete forms of the enzyme were those for MgATP and MgADP at the high-affinity catalytic site 1. Kd1(MgATP) and Kd1(MgADP) were an order of magnitude higher in the absence of epsilon than in its presence. In contrast, the binding affinities for MgATP and MgADP at sites 2 and 3 were similar in the epsilon-depleted and epsilon-replete enzymes, as were the affinities at all three sites for free ATP and ADP. Comparison of MgATP binding and hydrolysis parameters showed that in the presence as well as the absence of epsilon, Km equals Kd3. Thus, in both cases, all three catalytic binding sites have to be occupied to obtain rapid (Vmax) MgATP hydrolysis rates.  相似文献   

4.
In crystal structures of bovine MF(1), the side chains of alpha F(357) and beta R(372) are near the adenines of nucleotides bound to noncatalytic sites. To determine if during catalysis these side chains must pass through the different arrangements in which they are present in crystal structures, the catalytic properties of the (alpha F(357)C)(3)(beta R(372)C)(3)gamma subcomplex of the TF(1)-ATPase were characterized before and after cross-linking the introduced cysteines with CuCl(2). The unmodified mutant enzyme hydrolyzes MgATP at 50% the rate exhibited by wild type. Detailed comparison of the catalytic properties of the double mutant enzyme before and after cross-linking with those of the wild-type subcomplex revealed the following. Before cross-linking, the (alpha F(357)C)(3)(beta R(372)C)(3)gamma subcomplex has less tendency than wild type to release inhibitory MgADP entrapped in a catalytic site during turnover when MgATP binds to noncatalytic sites. Following cross-linking, ATPase activity is reduced 5-fold, and inhibitory MgADP entrapped in a catalytic site during turnover does not release under conditions wherein binding of ATP to noncatalytic sites of the wild-type enzyme promotes release of MgADP from the affected catalytic site. When assayed in the presence of lauryldimethylamine oxide, which prevents turnover-dependent entrapment of inhibitory MgADP in a catalytic site, ATPase activity of the cross-linked form is 47% that of the unmodified mutant enzyme. These results suggest that, during catalysis, the side chains of alpha F(357) and beta R(372) do not pass through the extremely different relative positions in which they exist at the three noncatalytic site interfaces in crystal structures.  相似文献   

5.
The functional role of essential residue alpha-Arg-376 in the catalytic site of F1-ATPase was studied. The mutants alpha R376C, alpha R376Q, and alpha R376K were constructed, and combined with the mutation beta Y331W, to investigate catalytic site nucleotide-binding parameters, and to assess catalytic transition state formation by measurement of MgADP-fluoroaluminate binding. Each mutation caused large impairment of ATP synthesis and hydrolysis. Despite the apparent proximity of alpha-Arg-376 to bound nucleoside di- and triphosphate in published X-ray structures, the mutations had little effect on MgADP or MgATP binding affinities, particularly at the highest affinity catalytic site, site 1. Both Cys and Gln mutants abolished transition state formation, demonstrating that alpha-Arg-376 is normally involved at this step of catalysis. A model of the F1-ATPase catalytic transition state structure is presented and discussed. The Lys mutant, although severely impaired, supported transition state formation, suggesting that an additional essential role for the alpha-Arg-376 guanidinium group exists, likely in alpha/beta conformational signal transmission required for steady-state catalysis. Parallels between alpha-Arg-376 and GAP/G-protein "arginine finger" residues are evident.  相似文献   

6.
In order to get insight into the origin of apparent negative cooperativity observed for F1-ATPase, we compared ATPase activity and ATPMg binding of mutant subcomplexes of thermophilic F1-ATPase, α(W463F)3β(Y341W)3γ and α(K175A/T176A/W463F)3β(Y341W)3γ. For α(W463F)3β(Y341W)3γ, apparent Km's of ATPase kinetics (4.0 and 233 μM) did not agree with apparent Km's deduced from fluorescence quenching of the introduced tryptophan residue (on the order of nM, 0.016 and 13 μM). On the other hand, in case of α(K175A/T176A/W463F)3β(Y341W)3γ, which lacks noncatalytic nucleotide binding sites, the apparent Km of ATPase activity (10 μM) roughly agreed with the highest Km of fluorescence measurements (27 μM). The results indicate that in case of α(W463F)3β(Y341W)3γ, the activating effect of ATP binding to noncatalytic sites dominates overall ATPase kinetics and the highest apparent Km of ATPase activity does not represent the ATP binding to a catalytic site. In case of α(K175A/T176A/W463F)3β(Y341W)3γ, the Km of ATPase activity reflects the ATP binding to a catalytic site due to the lack of noncatalytic sites. The Eadie-Hofstee plot of ATPase reaction by α(K175A/T176A/W463F)3β(Y341W)3γ was rather linear compared with that of α(W463F)3β(Y341W)3γ, if not perfectly straight, indicating that the apparent negative cooperativity observed for wild-type F1-ATPase is due to the ATP binding to catalytic sites and noncatalytic sites. Thus, the frequently observed Km's of 100-300 μM and 1-30 μM range for wild-type F1-ATPase correspond to ATP binding to a noncatalytic site and catalytic site, respectively.  相似文献   

7.
Ren H  Bandyopadhyay S  Allison WS 《Biochemistry》2006,45(19):6222-6230
The alpha(3)(betaM(222)S/Y(345)W)(3)gamma double-mutant subcomplex of the F(1)-ATPase from the thermophilic Bacillus PS3 (TF(1)), free of endogenous nucleotides, does not entrap inhibitory MgADP in a catalytic site during turnover. It hydrolyzes 100 nM-2 mM ATP with a K(m) of 31 microM and a k(cat) of 220 s(-)(1). Fluorescence titrations of the introduced tryptophans with MgADP or MgATP revealed that both Mg-nucleotide complexes bind to the catalytic site of the highest affinity with K(d)()1 values of less than 1 nM and bind to the site of intermediate affinity with a common K(d)2 value of about 12 nM. The K(d)3 values obtained for the catalytic site of the lowest affinity from titrations with MgADP and MgATP are 25 and 37 microM, respectively. The double mutant hydrolyzes 200 nM ATP with a first-order rate of 1.5 s(-)(1), which is 0.7% of k(cat). Hence, it does not hydrolyze ATP at a significant rate when the catalytic site of intermediate affinity is saturated and the catalytic site of the lowest affinity is minimally occupied. After the addition of stoichiometric MgATP to the alpha(3)(betaM(222)S/Y(345)W)(3)gamma subcomplex, one-third of the tryptophan fluorescence remains quenched after 10 min. The product [(3)H]ADP remains bound when the wild-type and double-mutant subcomplexes hydrolyze substoichiometric [(3)H]ATP. In contrast, (32)P(i) is not retained when the wild-type subcomplex hydrolyzes substoichiometric [gamma-(32)P]ATP. This precludes assessment of the equilibrium at the high-affinity catalytic site when the wild-type TF(1) subcomplex hydrolyzes substoichiometric ATP.  相似文献   

8.
Nadanaciva S  Weber J  Senior AE 《Biochemistry》2000,39(31):9583-9590
MgADP in combination with fluoroscandium (ScFx) is shown to form a potently inhibitory, tightly bound, noncovalent complex at the catalytic sites of F(1)-ATPase. The F(1).MgADP.ScFx complex mimics a catalytic transition state. Notably, ScFx caused large enhancement of MgADP binding affinity at both catalytic sites 1 and 2, with little effect at site 3. These results indicate that sites 1 and 2 may form a transition state conformation. A new direct optical probe of F(1)-ATPase catalytic transition state conformation is also reported, namely, substantial enhancement of fluorescence emission of residue beta-Trp-148 observed upon binding of MgADP.ScFx or MgIDP. ScFx. Using this fluorescence signal, titrations were performed with MgIDP.ScFx which demonstrated that catalytic sites 1 and 2 can both form a transition state conformation but site 3 cannot. Supporting data were obtained using MgIDP-fluoroaluminate. Current models of the MgATP hydrolysis mechanism uniformly make the assumption that only one catalytic site hydrolyzes MgATP at any one time. The fluorometal analogues demonstrate that two sites have the capability to form the transition state simultaneously.  相似文献   

9.
It has been reported that shifts in the fluorescence emission spectrum of the introduced tryptophans in the betaF155W mutant of Escherichia coli F(1) (bovine heart mitochondria F(1) residue number) can quantitatively distinguish between the number of catalytic sites occupied with ADP and ATP during steady-state ATP hydrolysis (Weber, J., Bowman, C., and Senior, A. E. (1996) J. Biol. Chem. 271, 18711--18718). In contrast, addition of MgADP, Mg-5'-adenylyl beta,gamma-imidophosphate (MgAMP-PNP), and MgATP in 1:1 ratios to the alpha(3)(betaF155W)(3)gamma subcomplex of thermophilic Bacillus PS3 F(1) (TF(1)) induced nearly identical blue shifts in the fluorescence emission maximum that was accompanied by quenching. Addition of 2 mm MgADP induced a slightly greater blue shift and a slight increase in intensity over those observed with 1:1 MgADP. However, addition of 2 mm MgAMP-PNP or MgATP induced a much greater blue shift and substantially enhanced fluorescence intensity over those observed in the presence of stoichiometric MgADP or MgAMP-PNP. It is clear from these results that the fluorescence spectrum of the introduced tryptophans in the betaF155W mutant of TF(1) does not respond in regular increments at any wavelength as catalytic sites are filled with nucleotides. The fluorescence spectrum observed after entrapping MgADP-fluoroaluminate complexes in two catalytic sites of the betaF155W subcomplex indicates that the fluorescence emission spectrum of the enzyme is maximally perturbed when nucleotides are bound to two catalytic sites. This finding is consistent with accumulating evidence suggesting that only two beta subunits in the alpha(3)beta(3)gamma subcomplex of TF(1) can simultaneously exist in the completely closed conformation.  相似文献   

10.
MgADP and MgATP binding to catalytic sites of βY341W-α3β3Γ subcomplex of F1-ATPase from thermophilic Bacillus PS3 has been assessed using their effect on the enzyme inhibition by 7-chloro-4-nitrobenz-2-oxa-1,3-diazole (NBD-Cl). It was assumed that NBD-Cl can inhibit only when catalytic sites are empty, and inhibition is prevented if a catalytic site is occupied with a nucleotide. In the absence of an activator, MgADP and MgATP protect βY341W-α3β3Γ sub-complex from inhibition by NBD-Cl by binding to two catalytic sites with an affinity of 37 μM and 12 mM, and 46 μM and 15 mM, respectively. In the presence of an activator lauryldimethylamine-N-oxide (LDAO), MgADP protects βY341W-α3β3Γ subcomplex from inhibition by NBD-Cl by binding to a catalytic site with a K d of 12 mM. Nucleotide binding to a catalytic site with affinity in the millimolar range has not been previously revealed in the fluorescence quenching experiments with βY341W-α3β3Γ subcomplex. In the presence of activators LDAO or selenite, MgATP protects βY341W-α3β3Γ subcomplex from inhibition by NBD-Cl only partially, and the enzyme remains sensitive to inhibition by NBD-Cl even at MgATP concentrations that are saturating for ATPase activity. The results support a bi-site mechanism of catalysis by F1-ATPases.  相似文献   

11.
Changes in the A(3)B(3)CDF-complex of the Methanosarcina mazei G?1 A(1)-ATPase in response to ligand binding have been studied by small-angle x-ray scattering, protease digestion, fluorescence spectroscopy, matrix-assisted laser desorption ionization time-of-flight mass spectrometry, and CuCl(2)-induced disulfide formation. The value of the radius of gyration, R(g), increases slightly when MgATP, MgADP, or MgADP + P(i) (but not MgAMP-PNP) is present. The nucleotide-binding subunits A and B were reacted with N-4[4-[7-(dimethylamino)-4-methyl]coumarin-3-yl]maleimide, and spectral shifts and changes in fluorescence intensity were detected upon addition of MgAMP-PNP, MgATP, MgADP + P(i), or MgADP. Trypsin treatment of A(1) resulted in cleavage of the stalk subunits C and F, which was rapid in the presence of MgAMP-PNP but slow when MgATP or MgADP were added to the enzyme. When A(1) was supplemented with CuCl(2) a clear nucleotide dependence of an A-A-D cross-linking product was generated in the presence of MgADP and MgATP but not when MgAMP-PNP or MgADP + P(i) was added. The site of cross-link formation was located in the region of the N and C termini of subunit D. The data suggest that the stalk subunits C, D, and F in A(1) undergo conformational changes during ATP hydrolysis.  相似文献   

12.
Using site-directed mutagenesis, Tyr-307, Tyr-341, or Tyr-364, supposedly located at the adenine nucleotide binding site(s) of the beta subunits of F1-ATPase from the thermophilic bacterium PS3, was replaced with Phe or Cys. The alpha 3 beta 3 complexes reconstituted from the alpha subunits and individual mutant beta subunits hydrolyzed ATP. Thus, neither the hydroxyl groups nor the aromatic rings in these positions are required for ATPase activity of F1-ATPase.  相似文献   

13.
The mechanism of inhibition of yeast mitochondrial F(1)-ATPase by its natural regulatory peptide, IF1, was investigated by correlating the rate of inhibition by IF1 with the nucleotide occupancy of the catalytic sites. Nucleotide occupancy of the catalytic sites was probed by fluorescence quenching of a tryptophan, which was engineered in the catalytic site (beta-Y345W). Fluorescence quenching of a beta-Trp(345) indicates that the binding of MgADP to F(1) can be described as 3 binding sites with dissociation constants of K(d)(1) = 10 +/- 2 nm, K(d2) = 0.22 +/- 0.03 microm, and K(d3) = 16.3 +/- 0.2 microm. In addition, the ATPase activity of the beta-Trp(345) enzyme followed simple Michaelis-Menten kinetics with a corresponding K(m) of 55 microm. Values for the K(d) for MgATP were estimated and indicate that the K(m) (55 microm) for ATP hydrolysis corresponds to filling the third catalytic site on F(1). IF1 binds very slowly to F(1)-ATPase depleted of nucleotides and under unisite conditions. The rate of inhibition by IF1 increased with increasing concentration of MgATP to about 50 mum, but decreased thereafter. The rate of inhibition was half-maximal at 5 microm MgATP, which is 10-fold lower than the K(m) for ATPase. The variations of the rate of IF1 binding are related to changes in the conformation of the IF1 binding site during the catalytic reaction cycle of ATP hydrolysis. A model is proposed that suggests that IF1 binds rapidly, but loosely to F(1) with two or three catalytic sites filled, and is then locked in the enzyme during catalytic hydrolysis of ATP.  相似文献   

14.
The binding of one ADP molecule at the catalytic site of the nucleotide depleted F1-ATPase results in a decrease in the initial rate of ATP hydrolysis. The addition of an equimolar amount of ATP to the nucleotide depleted F1-ATPase leads to the same effect, but, in this case, inhibition is time dependent. The half-time of this process is about 30 s, and the inhibition is correlated with Pi dissociation from the F1-ATPase catalytic site (uni-site catalysis). The F1-ATPase-ADP complex formed under uni-site catalysis conditions can be reactivated in two ways: (i) slow ATP-dependent ADP release from the catalytic site (tau 1/2 20 s) or (ii) binding of Pi in addition to MgADP and the formation of the triple F1-ATPase-MgADP-Pi complex. GTP and GDP are also capable of binding to the catalytic site, however, without changes in the kinetic properties of the F1-ATPase. It is proposed that ATP-dependent dissociation of the F1-ATPase-GDP complex occurs more rapidly, than that of the F1-ATPase-ADP complex.  相似文献   

15.
The amino acid sequence -Gly-X-X-X-X-Gly-Lys- occurs in many, diverse, nucleotide-binding proteins, and there is evidence that it forms a flexible loop which interacts with one or other of the phosphate groups of bound nucleotide. This sequence occurs as -Gly-Gly-Ala-Gly-Val-Gly-Lys- in the beta-subunit of the enzyme F1-ATPase, where it is thought to form part of the catalytic nucleotide-binding domain. Mutants of Escherichia coli were generated in which residue beta-lysine 155, at the end of the above sequence, was replaced by glutamine or glutamate. Properties of the soluble purified F1-ATPase from each mutant were studied. The results showed: 1) replacement of lysine 155 by Gln or Glu decreased the steady-state rate of ATP hydrolysis by 80 and 66%, respectively. 2) Characteristics of ATP hydrolysis at a single site were not markedly changed in the mutant enzymes, implying that lysine 155 is not directly involved in bond cleavage during ATP hydrolysis or bond formation during ATP synthesis. 3) The binding affinity for MgATP was weakened considerably in the mutants (Lys much much greater than Gln greater than Glu), whereas the binding affinity for MgADP was affected only mildly (Lys = Gln greater than Glu), suggesting that lysine 155 interacts with the gamma-phosphate of ATP bound at a single high affinity catalytic site. 4) The major determinant of inhibition of steady-state ATPase turnover rate in the mutant enzymes was an attenuation of positive catalytic cooperativity. 5) The data are consistent with the idea that during multisite catalysis residue 155 of beta-subunit undergoes conformational movement which changes substrate and product binding affinities.  相似文献   

16.
Binding of the transition state analog MgADP-fluoroaluminate to F1-ATPase   总被引:1,自引:0,他引:1  
Escherichia coli F1-ATPase from mutant betaY331W was potently inhibited by fluoroaluminate plus MgADP but not by MgADP alone. beta-Trp-331 fluorescence was used to measure MgADP binding to catalytic sites. Fluoroaluminate induced a very large increase in MgADP binding affinity at catalytic site one, a smaller increase at site two, and no effect at site three. Mutation of either of the critical catalytic site residues beta-Lys-155 or beta-Glu-181 to Gln abolished the effects of fluoroaluminate on MgADP binding. The results indicate that the MgADP-fluoroaluminate complex is a transition state analog and independently demonstrate that residues beta-Lys-155 and (particularly) beta-Glu-181 are important for generation and stabilization of the catalytic transition state. Dicyclohexylcarbodiimide-inhibited enzyme, with 1% residual steady-state ATPase, showed normal transition state formation as judged by fluoroaluminate-induced MgADP binding affinity changes, consistent with a proposed mechanism by which dicyclohexylcarbodiimide prevents a conformational interaction between catalytic sites but does not affect the catalytic step per se. The fluorescence technique should prove valuable for future transition state studies of F1-ATPase.  相似文献   

17.
MgADP binding to the allosteric site enhances the affinity of Escherichia coli phosphofructokinase (PFK) for fructose 6-phosphate (Fru-6-P). X-ray crystallographic data indicate that MgADP interacts with the conserved glutamate at position 187 within the allosteric site through an octahedrally coordinated Mg(2+) ion [Shirakihara, Y., and Evans, P. R. (1988) J. Mol. Biol. 204, 973-994]. Lau and Fersht reported that substituting an alanine for this glutamate within the allosteric site of PFK (i.e., mutant E187A) causes MgADP to lose its allosteric effect upon Fru-6-P binding [Lau, F. T.-K., and Fersht, A. R. (1987) Nature 326, 811-812]. However, these authors later reported that MgADP inhibits Fru-6-P binding in the E187A mutant. The inhibition presumably occurs by preferential binding to the inactive (T) state complex of the Monod-Wyman-Changeux two-state model [Lau, F. T.-K., and Fersht, A. R. (1989) Biochemistry 28, 6841-6847]. The present study provides an alternative explanation of the role of MgADP in the E187A mutant. Using enzyme kinetics, steady-state fluorescence emission, and anisotropy, we performed a systematic linkage analysis of the three-ligand interaction between MgADP, Fru-6-P, and MgATP. We found that MgADP at low concentrations did not enhance or inhibit substrate binding. Anisotropy shows that MgADP binding at the allosteric site occurred even when MgADP produced no allosteric effect. However, as in the wild-type enzyme, the binding of MgADP to the active site in the mutant competitively inhibited MgATP binding and noncompetitively inhibited Fru-6-P binding. These results clarified the mechanism of a three-ligand interaction and offered a nontraditional perspective on allosteric mechanism.  相似文献   

18.
Two highly conserved amino acid residues near the C-terminus within the gamma subunit of the mitochondrial ATP synthase form a "catch" with an anionic loop on one of the three beta subunits within the catalytic alphabeta hexamer of the F1 segment [Abrahams, J. P., Leslie, A. G. W., Lutter, R., and Walker, J. E. (1994) Nature 370, 621-628]. Forming the catch is considered to be an essential step in cooperative nucleotide binding leading to gamma subunit rotation. The analogous residues, Arg304 and Gln305, in the chloroplast F1 gamma subunit were changed to leucine and alanine, respectively. Each mutant gamma was assembled together with alpha and beta subunits from Rhodospirillum rubrum F1 into a hybrid photosynthetic F1 that carries out both MgATPase and CaATPase activities and ATP-dependent gamma rotation [Tucker, W. C., Schwarcz, A., Levine, T., Du, Z., Gromet-Elhanan, Z., Richter, M. L. and Haran, G. (2004) J. Biol. Chem. 279, 47415-47418]. Surprisingly, changing Arg304 to leucine resulted in a more than 2-fold increase in the kcat for MgATP hydrolysis. In contrast, changing Gln305 to alanine had little effect on the kcat but completely abolished the well-known stimulatory effect of the oxyanion sulfite on MgATP hydrolysis. The MgATPase activities of combined mutants with both residues substituted were strongly inhibited, whereas the CaATPase activities were inhibited, but to a lesser extent. The results indicate that the C-terminus of the photosynthetic F1 gamma subunit, like its mitochondrial counterpart, forms a catch with the alpha and beta subunits that modulates the nucleotide binding properties of the catalytic site(s). The catch is likely to be part of an activation mechanism, overcoming inhibition by free mg2+ ions, but is not essential for cooperative nucleotide exchange.  相似文献   

19.
The first part of this paper is a brief review of works concerned with the mechanisms of functioning of F0F1-ATP synthases. F0F1-ATP syntheses operate as rotating molecular machines that provide the synthesis of ATP from ADP and inorganic phosphate (Pi) in mitochondria, chloroplasts, and bacteria at the expense of the energy of electrochemical gradient of hydrogen ions generated across energy-transducing mitochondrial, chloroplast or, bacterial membranes. A distinguishing feature of these enzymes is that they operate as rotary molecular motors. In the second part of the work, we calculated the contribution of electrostatic interactions between charged groups of a substrate (MgATP), reaction products (MgADP and Pi), and charged amino acid residues of the F1-ATPase molecule to energy changes associated with the binding of ATP and its chemical transformations in the catalytic centers located at the interface of the alpha- and beta-subunits of the enzyme (oligomer complex alpha 3 beta 3 gamma of bovine mitochondrial ATPase). The catalytic cycle of ATP hydrolysis considered in the work includes conformational changes of alpha- and beta-subunits caused by unidirectional rotations of the central gamma-subunit. The results of our calculations are consistent with the idea that the energetically favorable process of ATP binding to the "open" catalytic center of F1-ATPase initiates the rotation of the gamma-subunit followed by ATP hydrolysis in another ("closed") catalytic center of the enzyme.  相似文献   

20.
Only beta-beta cross-links form when the alpha(3)(betaE(395)C)(3)gammaK(36)C (MF(1) residue numbers) double mutant subcomplex of TF(1), the F(1)-ATPase from the thermophilic Bacillus PS3, is slowly inactivated with CuCl(2) in the presence or absence of MgATP. The same slow rate of inactivation and extent of beta-beta cross-linking occur upon treatment of the alpha(3)(betaE(395)C)(3)gamma single mutant subcomplex with CuCl(2) under the same conditions. In contrast, the alpha(3)(betaE(395)C)(3)gammaR(33)C and alpha(3)(betaE(395)C)(3)gammaR(75)C double mutant subcomplexes of TF(1) are rapidly inactivated by CuCl(2) under the same conditions that is accompanied by complete beta-gamma cross-linking. The ATPase activity of each mutant enzyme containing the betaE(395)C substitution is stimulated to a much greater extent by the nonionic detergent lauryldimethylamine oxide (LDAO) than wild-type enzyme, whereas the ATPase activities of the gammaR(33)C, gammaK(36)C, and gammaR(75)C single mutants are stimulated to about the same extent as wild-type enzyme by LDAO. This indicates that the E(395)C substitution in the (394)DELSEED(400) segment of beta subunits increases propensity of the enzyme to entrap inhibitory MgADP in a catalytic site during turnover. These results are discussed in perspective with (i) the ionic track predicted from molecular dynamics simulations to operate during energy-driven ATP synthesis by MF(1), the F(1)-ATPase from bovine heart mitochondria [Ma, J., Flynn, T. C., Cui, Q., Leslie, A. G. W., Walker, J. E., and Karplus, M. (2002) Structure 10, 921-931]; and (ii) the possibility that the betaE(395)C substitution might induce a global effect that alters affinity of noncatalytic sites for nucleotides or alters communication between noncatalytic sites and catalytic sites during ATP hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号